
NAME
ASN1_TIME_set, ASN1_UTCTIME_set, ASN1_GENERALIZEDTIME_set, ASN1_TIME_adj,

ASN1_UTCTIME_adj, ASN1_GENERALIZEDTIME_adj, ASN1_TIME_check,

ASN1_UTCTIME_check, ASN1_GENERALIZEDTIME_check, ASN1_TIME_set_string,

ASN1_UTCTIME_set_string, ASN1_GENERALIZEDTIME_set_string,

ASN1_TIME_set_string_X509, ASN1_TIME_normalize, ASN1_TIME_to_tm, ASN1_TIME_print,

ASN1_TIME_print_ex, ASN1_UTCTIME_print, ASN1_GENERALIZEDTIME_print,

ASN1_TIME_diff, ASN1_TIME_cmp_time_t, ASN1_UTCTIME_cmp_time_t,

ASN1_TIME_compare, ASN1_TIME_to_generalizedtime, ASN1_TIME_dup,

ASN1_UTCTIME_dup, ASN1_GENERALIZEDTIME_dup - ASN.1 Time functions

SYNOPSIS
ASN1_TIME *ASN1_TIME_set(ASN1_TIME *s, time_t t);

ASN1_UTCTIME *ASN1_UTCTIME_set(ASN1_UTCTIME *s, time_t t);

ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_set(ASN1_GENERALIZEDTIME *s,

time_t t);

ASN1_TIME *ASN1_TIME_adj(ASN1_TIME *s, time_t t, int offset_day,

long offset_sec);

ASN1_UTCTIME *ASN1_UTCTIME_adj(ASN1_UTCTIME *s, time_t t,

int offset_day, long offset_sec);

ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_adj(ASN1_GENERALIZEDTIME *s,

time_t t, int offset_day,

long offset_sec);

int ASN1_TIME_set_string(ASN1_TIME *s, const char *str);

int ASN1_TIME_set_string_X509(ASN1_TIME *s, const char *str);

int ASN1_UTCTIME_set_string(ASN1_UTCTIME *s, const char *str);

int ASN1_GENERALIZEDTIME_set_string(ASN1_GENERALIZEDTIME *s,

const char *str);

int ASN1_TIME_normalize(ASN1_TIME *s);

int ASN1_TIME_check(const ASN1_TIME *t);

int ASN1_UTCTIME_check(const ASN1_UTCTIME *t);

int ASN1_GENERALIZEDTIME_check(const ASN1_GENERALIZEDTIME *t);

int ASN1_TIME_print(BIO *b, const ASN1_TIME *s);

int ASN1_TIME_print_ex(BIO *bp, const ASN1_TIME *tm, unsigned long flags);

int ASN1_UTCTIME_print(BIO *b, const ASN1_UTCTIME *s);

ASN1_TIME_SET(3ossl) OpenSSL ASN1_TIME_SET(3ossl)

3.0.11 2023-09-19 ASN1_TIME_SET(3ossl)

int ASN1_GENERALIZEDTIME_print(BIO *b, const ASN1_GENERALIZEDTIME *s);

int ASN1_TIME_to_tm(const ASN1_TIME *s, struct tm *tm);

int ASN1_TIME_diff(int *pday, int *psec, const ASN1_TIME *from,

const ASN1_TIME *to);

int ASN1_TIME_cmp_time_t(const ASN1_TIME *s, time_t t);

int ASN1_UTCTIME_cmp_time_t(const ASN1_UTCTIME *s, time_t t);

int ASN1_TIME_compare(const ASN1_TIME *a, const ASN1_TIME *b);

ASN1_GENERALIZEDTIME *ASN1_TIME_to_generalizedtime(ASN1_TIME *t,

ASN1_GENERALIZEDTIME **out);

ASN1_TIME *ASN1_TIME_dup(const ASN1_TIME *t);

ASN1_UTCTIME *ASN1_UTCTIME_dup(const ASN1_UTCTIME *t);

ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_dup(const ASN1_GENERALIZEDTIME *t);

DESCRIPTION
The ASN1_TIME_set(), ASN1_UTCTIME_set() and ASN1_GENERALIZEDTIME_set() functions

set the structure s to the time represented by the time_t value t. If s is NULL a new time structure is

allocated and returned.

The ASN1_TIME_adj(), ASN1_UTCTIME_adj() and ASN1_GENERALIZEDTIME_adj() functions

set the time structure s to the time represented by the time offset_day and offset_sec after the time_t

value t. The values of offset_day or offset_sec can be negative to set a time before t. The offset_sec

value can also exceed the number of seconds in a day. If s is NULL a new structure is allocated and

returned.

The ASN1_TIME_set_string(), ASN1_UTCTIME_set_string() and

ASN1_GENERALIZEDTIME_set_string() functions set the time structure s to the time represented by

string str which must be in appropriate ASN.1 time format (for example YYMMDDHHMMSSZ or

YYYYMMDDHHMMSSZ). If s is NULL this function performs a format check on str only. The string

str is copied into s.

ASN1_TIME_set_string_X509() sets ASN1_TIME structure s to the time represented by string str

which must be in appropriate time format that RFC 5280 requires, which means it only allows

YYMMDDHHMMSSZ and YYYYMMDDHHMMSSZ (leap second is rejected), all other ASN.1 time

format are not allowed. If s is NULL this function performs a format check on str only.

ASN1_TIME_SET(3ossl) OpenSSL ASN1_TIME_SET(3ossl)

3.0.11 2023-09-19 ASN1_TIME_SET(3ossl)

The ASN1_TIME_normalize() function converts an ASN1_GENERALIZEDTIME or

ASN1_UTCTIME into a time value that can be used in a certificate. It should be used after the

ASN1_TIME_set_string() functions and before ASN1_TIME_print() functions to get consistent (i.e.

GMT) results.

The ASN1_TIME_check(), ASN1_UTCTIME_check() and ASN1_GENERALIZEDTIME_check()
functions check the syntax of the time structure s.

The ASN1_TIME_print(), ASN1_UTCTIME_print() and ASN1_GENERALIZEDTIME_print()
functions print the time structure s to BIO b in human readable format. It will be of the format MMM

DD HH:MM:SS YYYY [GMT], for example "Feb 3 00:55:52 2015 GMT", which does not include a

newline. If the time structure has invalid format it prints out "Bad time value" and returns an error. The

output for generalized time may include a fractional part following the second.

ASN1_TIME_print_ex() provides flags to specify the output format of the datetime. This can be either

ASN1_DTFLGS_RFC822 or ASN1_DTFLGS_ISO8601.

ASN1_TIME_to_tm() converts the time s to the standard tm structure. If s is NULL, then the current

time is converted. The output time is GMT. The tm_sec, tm_min, tm_hour, tm_mday, tm_wday,

tm_yday, tm_mon and tm_year fields of tm structure are set to proper values, whereas all other fields

are set to 0. If tm is NULL this function performs a format check on s only. If s is in Generalized

format with fractional seconds, e.g. YYYYMMDDHHMMSS.SSSZ, the fractional seconds will be lost

while converting s to tm structure.

ASN1_TIME_diff() sets *pday and *psec to the time difference between from and to. If to represents a

time later than from then one or both (depending on the time difference) of *pday and *psec will be

positive. If to represents a time earlier than from then one or both of *pday and *psec will be negative.

If to and from represent the same time then *pday and *psec will both be zero. If both *pday and

*psec are nonzero they will always have the same sign. The value of *psec will always be less than the

number of seconds in a day. If from or to is NULL the current time is used.

The ASN1_TIME_cmp_time_t() and ASN1_UTCTIME_cmp_time_t() functions compare the two

times represented by the time structure s and the time_t t.

The ASN1_TIME_compare() function compares the two times represented by the time structures a and

b.

The ASN1_TIME_to_generalizedtime() function converts an ASN1_TIME to an

ASN1_GENERALIZEDTIME, regardless of year. If either out or *out are NULL, then a new object is

allocated and must be freed after use.

ASN1_TIME_SET(3ossl) OpenSSL ASN1_TIME_SET(3ossl)

3.0.11 2023-09-19 ASN1_TIME_SET(3ossl)

The ASN1_TIME_dup(), ASN1_UTCTIME_dup() and ASN1_GENERALIZEDTIME_dup() functions

duplicate the time structure t and return the duplicated result correspondingly.

NOTES
The ASN1_TIME structure corresponds to the ASN.1 structure Time defined in RFC5280 et al. The

time setting functions obey the rules outlined in RFC5280: if the date can be represented by UTCTime

it is used, else GeneralizedTime is used.

The ASN1_TIME, ASN1_UTCTIME and ASN1_GENERALIZEDTIME structures are represented as

an ASN1_STRING internally and can be freed up using ASN1_STRING_free().

The ASN1_TIME structure can represent years from 0000 to 9999 but no attempt is made to correct

ancient calendar changes (for example from Julian to Gregorian calendars).

ASN1_UTCTIME is limited to a year range of 1950 through 2049.

Some applications add offset times directly to a time_t value and pass the results to ASN1_TIME_set()
(or equivalent). This can cause problems as the time_t value can overflow on some systems resulting in

unexpected results. New applications should use ASN1_TIME_adj() instead and pass the offset value

in the offset_sec and offset_day parameters instead of directly manipulating a time_t value.

ASN1_TIME_adj() may change the type from ASN1_GENERALIZEDTIME to ASN1_UTCTIME, or

vice versa, based on the resulting year. ASN1_GENERALIZEDTIME_adj() and

ASN1_UTCTIME_adj() will not modify the type of the return structure.

It is recommended that functions starting with ASN1_TIME be used instead of those starting with

ASN1_UTCTIME or ASN1_GENERALIZEDTIME. The functions starting with ASN1_UTCTIME
and ASN1_GENERALIZEDTIME act only on that specific time format. The functions starting with

ASN1_TIME will operate on either format.

BUGS
ASN1_TIME_print(), ASN1_UTCTIME_print() and ASN1_GENERALIZEDTIME_print() do not

print out the timezone: it either prints out "GMT" or nothing. But all certificates complying with

RFC5280 et al use GMT anyway.

ASN1_TIME_print(), ASN1_TIME_print_ex(), ASN1_UTCTIME_print() and

ASN1_GENERALIZEDTIME_print() do not distinguish if they fail because of an I/O error or invalid

time format.

Use the ASN1_TIME_normalize() function to normalize the time value before printing to get GMT

ASN1_TIME_SET(3ossl) OpenSSL ASN1_TIME_SET(3ossl)

3.0.11 2023-09-19 ASN1_TIME_SET(3ossl)

results.

RETURN VALUES
ASN1_TIME_set(), ASN1_UTCTIME_set(), ASN1_GENERALIZEDTIME_set(),
ASN1_TIME_adj(), ASN1_UTCTIME_adj() and ASN1_GENERALIZEDTIME_set() return a pointer

to a time structure or NULL if an error occurred.

ASN1_TIME_set_string(), ASN1_UTCTIME_set_string(), ASN1_GENERALIZEDTIME_set_string()
and ASN1_TIME_set_string_X509() return 1 if the time value is successfully set and 0 otherwise.

ASN1_TIME_normalize() returns 1 on success, and 0 on error.

ASN1_TIME_check(), ASN1_UTCTIME_check and ASN1_GENERALIZEDTIME_check() return 1

if the structure is syntactically correct and 0 otherwise.

ASN1_TIME_print(), ASN1_UTCTIME_print() and ASN1_GENERALIZEDTIME_print() return 1 if

the time is successfully printed out and 0 if an I/O error occurred an error occurred (I/O error or invalid

time format).

ASN1_TIME_to_tm() returns 1 if the time is successfully parsed and 0 if an error occurred (invalid

time format).

ASN1_TIME_diff() returns 1 for success and 0 for failure. It can fail if the passed-in time structure has

invalid syntax, for example.

ASN1_TIME_cmp_time_t() and ASN1_UTCTIME_cmp_time_t() return -1 if s is before t, 0 if s equals

t, or 1 if s is after t. -2 is returned on error.

ASN1_TIME_compare() returns -1 if a is before b, 0 if a equals b, or 1 if a is after b. -2 is returned on

error.

ASN1_TIME_to_generalizedtime() returns a pointer to the appropriate time structure on success or

NULL if an error occurred.

ASN1_TIME_dup(), ASN1_UTCTIME_dup() and ASN1_GENERALIZEDTIME_dup() return a

pointer to a time structure or NULL if an error occurred.

EXAMPLES
Set a time structure to one hour after the current time and print it out:

ASN1_TIME_SET(3ossl) OpenSSL ASN1_TIME_SET(3ossl)

3.0.11 2023-09-19 ASN1_TIME_SET(3ossl)

#include <time.h>

#include <openssl/asn1.h>

ASN1_TIME *tm;

time_t t;

BIO *b;

t = time(NULL);

tm = ASN1_TIME_adj(NULL, t, 0, 60 * 60);

b = BIO_new_fp(stdout, BIO_NOCLOSE);

ASN1_TIME_print(b, tm);

ASN1_STRING_free(tm);

BIO_free(b);

Determine if one time is later or sooner than the current time:

int day, sec;

if (!ASN1_TIME_diff(&day, &sec, NULL, to))

/* Invalid time format */

if (day > 0 || sec > 0)

printf("Later\n");

else if (day < 0 || sec < 0)

printf("Sooner\n");

else

printf("Same\n");

HISTORY
The ASN1_TIME_to_tm() function was added in OpenSSL 1.1.1. The

ASN1_TIME_set_string_X509() function was added in OpenSSL 1.1.1. The

ASN1_TIME_normalize() function was added in OpenSSL 1.1.1. The ASN1_TIME_cmp_time_t()
function was added in OpenSSL 1.1.1. The ASN1_TIME_compare() function was added in OpenSSL

1.1.1.

COPYRIGHT
Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

ASN1_TIME_SET(3ossl) OpenSSL ASN1_TIME_SET(3ossl)

3.0.11 2023-09-19 ASN1_TIME_SET(3ossl)

at <https://www.openssl.org/source/license.html>.

ASN1_TIME_SET(3ossl) OpenSSL ASN1_TIME_SET(3ossl)

3.0.11 2023-09-19 ASN1_TIME_SET(3ossl)

