
NAME
ASYNC_WAIT_CTX_new, ASYNC_WAIT_CTX_free, ASYNC_WAIT_CTX_set_wait_fd,

ASYNC_WAIT_CTX_get_fd, ASYNC_WAIT_CTX_get_all_fds,

ASYNC_WAIT_CTX_get_changed_fds, ASYNC_WAIT_CTX_clear_fd,

ASYNC_WAIT_CTX_set_callback, ASYNC_WAIT_CTX_get_callback,

ASYNC_WAIT_CTX_set_status, ASYNC_WAIT_CTX_get_status, ASYNC_callback_fn,

ASYNC_STATUS_UNSUPPORTED, ASYNC_STATUS_ERR, ASYNC_STATUS_OK,

ASYNC_STATUS_EAGAIN - functions to manage waiting for asynchronous jobs to complete

SYNOPSIS
#include <openssl/async.h>

#define ASYNC_STATUS_UNSUPPORTED 0

#define ASYNC_STATUS_ERR 1

#define ASYNC_STATUS_OK 2

#define ASYNC_STATUS_EAGAIN 3

typedef int (*ASYNC_callback_fn)(void *arg);

ASYNC_WAIT_CTX *ASYNC_WAIT_CTX_new(void);

void ASYNC_WAIT_CTX_free(ASYNC_WAIT_CTX *ctx);

int ASYNC_WAIT_CTX_set_wait_fd(ASYNC_WAIT_CTX *ctx, const void *key,

OSSL_ASYNC_FD fd,

void *custom_data,

void (*cleanup)(ASYNC_WAIT_CTX *, const void *,

OSSL_ASYNC_FD, void *));

int ASYNC_WAIT_CTX_get_fd(ASYNC_WAIT_CTX *ctx, const void *key,

OSSL_ASYNC_FD *fd, void **custom_data);

int ASYNC_WAIT_CTX_get_all_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *fd,

size_t *numfds);

int ASYNC_WAIT_CTX_get_changed_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *addfd,

size_t *numaddfds, OSSL_ASYNC_FD *delfd,

size_t *numdelfds);

int ASYNC_WAIT_CTX_clear_fd(ASYNC_WAIT_CTX *ctx, const void *key);

int ASYNC_WAIT_CTX_set_callback(ASYNC_WAIT_CTX *ctx,

ASYNC_callback_fn callback,

void *callback_arg);

int ASYNC_WAIT_CTX_get_callback(ASYNC_WAIT_CTX *ctx,

ASYNC_callback_fn *callback,

void **callback_arg);

int ASYNC_WAIT_CTX_set_status(ASYNC_WAIT_CTX *ctx, int status);

int ASYNC_WAIT_CTX_get_status(ASYNC_WAIT_CTX *ctx);

ASYNC_WAIT_CTX_NEW(3ossl) OpenSSL ASYNC_WAIT_CTX_NEW(3ossl)

3.0.11 2023-09-19 ASYNC_WAIT_CTX_NEW(3ossl)

DESCRIPTION
For an overview of how asynchronous operations are implemented in OpenSSL see

ASYNC_start_job(3). An ASYNC_WAIT_CTX object represents an asynchronous "session", i.e. a

related set of crypto operations. For example in SSL terms this would have a one-to-one

correspondence with an SSL connection.

Application code must create an ASYNC_WAIT_CTX using the ASYNC_WAIT_CTX_new()
function prior to calling ASYNC_start_job() (see ASYNC_start_job(3)). When the job is started it is

associated with the ASYNC_WAIT_CTX for the duration of that job. An ASYNC_WAIT_CTX
should only be used for one ASYNC_JOB at any one time, but can be reused after an ASYNC_JOB
has finished for a subsequent ASYNC_JOB. When the session is complete (e.g. the SSL connection is

closed), application code cleans up with ASYNC_WAIT_CTX_free().

ASYNC_WAIT_CTXs can have "wait" file descriptors associated with them. Calling

ASYNC_WAIT_CTX_get_all_fds() and passing in a pointer to an ASYNC_WAIT_CTX in the ctx

parameter will return the wait file descriptors associated with that job in *fd. The number of file

descriptors returned will be stored in *numfds. It is the caller’s responsibility to ensure that sufficient

memory has been allocated in *fd to receive all the file descriptors. Calling

ASYNC_WAIT_CTX_get_all_fds() with a NULL fd value will return no file descriptors but will still

populate *numfds. Therefore, application code is typically expected to call this function twice: once to

get the number of fds, and then again when sufficient memory has been allocated. If only one

asynchronous engine is being used then normally this call will only ever return one fd. If multiple

asynchronous engines are being used then more could be returned.

The function ASYNC_WAIT_CTX_get_changed_fds() can be used to detect if any fds have changed

since the last call time ASYNC_start_job() returned ASYNC_PAUSE (or since the

ASYNC_WAIT_CTX was created if no ASYNC_PAUSE result has been received). The numaddfds

and numdelfds parameters will be populated with the number of fds added or deleted respectively.

*addfd and *delfd will be populated with the list of added and deleted fds respectively. Similarly to

ASYNC_WAIT_CTX_get_all_fds() either of these can be NULL, but if they are not NULL then the

caller is responsible for ensuring sufficient memory is allocated.

Implementers of async aware code (e.g. engines) are encouraged to return a stable fd for the lifetime of

the ASYNC_WAIT_CTX in order to reduce the "churn" of regularly changing fds - although no

guarantees of this are provided to applications.

Applications can wait for the file descriptor to be ready for "read" using a system function call such as

select or poll (being ready for "read" indicates that the job should be resumed). If no file descriptor is

made available then an application will have to periodically "poll" the job by attempting to restart it to

see if it is ready to continue.

ASYNC_WAIT_CTX_NEW(3ossl) OpenSSL ASYNC_WAIT_CTX_NEW(3ossl)

3.0.11 2023-09-19 ASYNC_WAIT_CTX_NEW(3ossl)

Async aware code (e.g. engines) can get the current ASYNC_WAIT_CTX from the job via

ASYNC_get_wait_ctx(3) and provide a file descriptor to use for waiting on by calling

ASYNC_WAIT_CTX_set_wait_fd(). Typically this would be done by an engine immediately prior to

calling ASYNC_pause_job() and not by end user code. An existing association with a file descriptor

can be obtained using ASYNC_WAIT_CTX_get_fd() and cleared using

ASYNC_WAIT_CTX_clear_fd(). Both of these functions requires a key value which is unique to the

async aware code. This could be any unique value but a good candidate might be the ENGINE * for

the engine. The custom_data parameter can be any value, and will be returned in a subsequent call to

ASYNC_WAIT_CTX_get_fd(). The ASYNC_WAIT_CTX_set_wait_fd() function also expects a

pointer to a "cleanup" routine. This can be NULL but if provided will automatically get called when the

ASYNC_WAIT_CTX is freed, and gives the engine the opportunity to close the fd or any other

resources. Note: The "cleanup" routine does not get called if the fd is cleared directly via a call to

ASYNC_WAIT_CTX_clear_fd().

An example of typical usage might be an async capable engine. User code would initiate cryptographic

operations. The engine would initiate those operations asynchronously and then call

ASYNC_WAIT_CTX_set_wait_fd() followed by ASYNC_pause_job() to return control to the user

code. The user code can then perform other tasks or wait for the job to be ready by calling "select" or

other similar function on the wait file descriptor. The engine can signal to the user code that the job

should be resumed by making the wait file descriptor "readable". Once resumed the engine should clear

the wake signal on the wait file descriptor.

As well as a file descriptor, user code may also be notified via a callback. The callback and data

pointers are stored within the ASYNC_WAIT_CTX along with an additional status field that can be

used for the notification of retries from an engine. This additional method can be used when the user

thinks that a file descriptor is too costly in terms of CPU cycles or in some context where a file

descriptor is not appropriate.

ASYNC_WAIT_CTX_set_callback() sets the callback and the callback argument. The callback will be

called to notify user code when an engine completes a cryptography operation. It is a requirement that

the callback function is small and nonblocking as it will be run in the context of a polling mechanism

or an interrupt.

ASYNC_WAIT_CTX_get_callback() returns the callback set in the ASYNC_WAIT_CTX structure.

ASYNC_WAIT_CTX_set_status() allows an engine to set the current engine status. The possible

status values are the following:

ASYNC_STATUS_UNSUPPORTED
The engine does not support the callback mechanism. This is the default value. The engine must

ASYNC_WAIT_CTX_NEW(3ossl) OpenSSL ASYNC_WAIT_CTX_NEW(3ossl)

3.0.11 2023-09-19 ASYNC_WAIT_CTX_NEW(3ossl)

call ASYNC_WAIT_CTX_set_status() to set the status to some value other than

ASYNC_STATUS_UNSUPPORTED if it intends to enable the callback mechanism.

ASYNC_STATUS_ERR
The engine has a fatal problem with this request. The user code should clean up this session.

ASYNC_STATUS_OK
The request has been successfully submitted.

ASYNC_STATUS_EAGAIN
The engine has some problem which will be recovered soon, such as a buffer is full, so user code

should resume the job.

ASYNC_WAIT_CTX_get_status() allows user code to obtain the current status value. If the status is

any value other than ASYNC_STATUS_OK then the user code should not expect to receive a callback

from the engine even if one has been set.

An example of the usage of the callback method might be the following. User code would initiate

cryptographic operations, and the engine code would dispatch this operation to hardware, and if the

dispatch is successful, then the engine code would call ASYNC_pause_job() to return control to the

user code. After that, user code can perform other tasks. When the hardware completes the operation,

normally it is detected by a polling function or an interrupt, as the user code set a callback by calling

ASYNC_WAIT_CTX_set_callback() previously, then the registered callback will be called.

RETURN VALUES
ASYNC_WAIT_CTX_new() returns a pointer to the newly allocated ASYNC_WAIT_CTX or NULL

on error.

ASYNC_WAIT_CTX_set_wait_fd, ASYNC_WAIT_CTX_get_fd, ASYNC_WAIT_CTX_get_all_fds,

ASYNC_WAIT_CTX_get_changed_fds, ASYNC_WAIT_CTX_clear_fd,

ASYNC_WAIT_CTX_set_callback, ASYNC_WAIT_CTX_get_callback and

ASYNC_WAIT_CTX_set_status all return 1 on success or 0 on error.

ASYNC_WAIT_CTX_get_status() returns the engine status.

NOTES
On Windows platforms the <openssl/async.h> header is dependent on some of the types customarily

made available by including <windows.h>. The application developer is likely to require control over

when the latter is included, commonly as one of the first included headers. Therefore, it is defined as an

application developer’s responsibility to include <windows.h> prior to <openssl/async.h>.

ASYNC_WAIT_CTX_NEW(3ossl) OpenSSL ASYNC_WAIT_CTX_NEW(3ossl)

3.0.11 2023-09-19 ASYNC_WAIT_CTX_NEW(3ossl)

SEE ALSO
crypto(7), ASYNC_start_job(3)

HISTORY
ASYNC_WAIT_CTX_new(), ASYNC_WAIT_CTX_free(), ASYNC_WAIT_CTX_set_wait_fd(),
ASYNC_WAIT_CTX_get_fd(), ASYNC_WAIT_CTX_get_all_fds(),
ASYNC_WAIT_CTX_get_changed_fds() and ASYNC_WAIT_CTX_clear_fd() were added in

OpenSSL 1.1.0.

ASYNC_WAIT_CTX_set_callback(), ASYNC_WAIT_CTX_get_callback(),
ASYNC_WAIT_CTX_set_status(), and ASYNC_WAIT_CTX_get_status() were added in OpenSSL

3.0.

COPYRIGHT
Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

ASYNC_WAIT_CTX_NEW(3ossl) OpenSSL ASYNC_WAIT_CTX_NEW(3ossl)

3.0.11 2023-09-19 ASYNC_WAIT_CTX_NEW(3ossl)

