
NAME
AutoLoader - load subroutines only on demand

SYNOPSIS
package Foo;

use AutoLoader ’AUTOLOAD’; # import the default AUTOLOAD subroutine

package Bar;

use AutoLoader; # don’t import AUTOLOAD, define our own

sub AUTOLOAD {

...

$AutoLoader::AUTOLOAD = "...";

goto &AutoLoader::AUTOLOAD;

}

DESCRIPTION
The AutoLoader module works with the AutoSplit module and the "__END__" token to defer the

loading of some subroutines until they are used rather than loading them all at once.

To use AutoLoader, the author of a module has to place the definitions of subroutines to be autoloaded

after an "__END__" token. (See perldata.) The AutoSplit module can then be run manually to extract

the definitions into individual files auto/funcname.al.

AutoLoader implements an AUTOLOAD subroutine. When an undefined subroutine in is called in a

client module of AutoLoader, AutoLoader’s AUTOLOAD subroutine attempts to locate the subroutine

in a file with a name related to the location of the file from which the client module was read. As an

example, if POSIX.pm is located in /usr/local/lib/perl5/POSIX.pm, AutoLoader will look for perl

subroutines POSIX in /usr/local/lib/perl5/auto/POSIX/*.al, where the ".al" file has the same name as

the subroutine, sans package. If such a file exists, AUTOLOAD will read and evaluate it, thus

(presumably) defining the needed subroutine. AUTOLOAD will then "goto" the newly defined

subroutine.

Once this process completes for a given function, it is defined, so future calls to the subroutine will

bypass the AUTOLOAD mechanism.

Subroutine Stubs
In order for object method lookup and/or prototype checking to operate correctly even when methods

have not yet been defined it is necessary to "forward declare" each subroutine (as in "sub NAME;").

See "SYNOPSIS" in perlsub. Such forward declaration creates "subroutine stubs", which are place

holders with no code.

AutoLoader(3) Perl Programmers Reference Guide AutoLoader(3)

perl v5.34.3 2023-11-28 AutoLoader(3)

The AutoSplit and AutoLoader modules automate the creation of forward declarations. The AutoSplit

module creates an ’index’ file containing forward declarations of all the AutoSplit subroutines. When

the AutoLoader module is ’use’d it loads these declarations into its callers package.

Because of this mechanism it is important that AutoLoader is always "use"d and not "require"d.

Using AutoLoader’s AUTOLOAD Subroutine
In order to use AutoLoader’s AUTOLOAD subroutine you must explicitly import it:

use AutoLoader ’AUTOLOAD’;

Overriding AutoLoader’s AUTOLOAD Subroutine
Some modules, mainly extensions, provide their own AUTOLOAD subroutines. They typically need

to check for some special cases (such as constants) and then fallback to AutoLoader’s AUTOLOAD for

the rest.

Such modules should not import AutoLoader’s AUTOLOAD subroutine. Instead, they should define

their own AUTOLOAD subroutines along these lines:

use AutoLoader;

use Carp;

sub AUTOLOAD {

my $sub = $AUTOLOAD;

(my $constname = $sub) =~ s/.*:://;

my $val = constant($constname, @_ ? $_[0] : 0);

if ($! != 0) {

if ($! =~ /Invalid/ || $!{EINVAL}) {

$AutoLoader::AUTOLOAD = $sub;

goto &AutoLoader::AUTOLOAD;

}

else {

croak "Your vendor has not defined constant $constname";

}

}

*$sub = sub { $val }; # same as: eval "sub $sub { $val }";

goto &$sub;

}

If any module’s own AUTOLOAD subroutine has no need to fallback to the AutoLoader’s

AutoLoader(3) Perl Programmers Reference Guide AutoLoader(3)

perl v5.34.3 2023-11-28 AutoLoader(3)

AUTOLOAD subroutine (because it doesn’t have any AutoSplit subroutines), then that module should

not use AutoLoader at all.

Package Lexicals
Package lexicals declared with "my" in the main block of a package using AutoLoader will not be

visible to auto-loaded subroutines, due to the fact that the given scope ends at the "__END__" marker.

A module using such variables as package globals will not work properly under the AutoLoader.

The "vars" pragma (see "vars" in perlmod) may be used in such situations as an alternative to explicitly

qualifying all globals with the package namespace. Variables pre-declared with this pragma will be

visible to any autoloaded routines (but will not be invisible outside the package, unfortunately).

Not Using AutoLoader
You can stop using AutoLoader by simply

no AutoLoader;

AutoLoader vs. SelfLoader
The AutoLoader is similar in purpose to SelfLoader: both delay the loading of subroutines.

SelfLoader uses the "__DATA__" marker rather than "__END__". While this avoids the use of a

hierarchy of disk files and the associated open/close for each routine loaded, SelfLoader suffers a

startup speed disadvantage in the one-time parsing of the lines after "__DATA__", after which routines

are cached. SelfLoader can also handle multiple packages in a file.

AutoLoader only reads code as it is requested, and in many cases should be faster, but requires a

mechanism like AutoSplit be used to create the individual files. ExtUtils::MakeMaker will invoke

AutoSplit automatically if AutoLoader is used in a module source file.

Forcing AutoLoader to Load a Function
Sometimes, it can be necessary or useful to make sure that a certain function is fully loaded by

AutoLoader. This is the case, for example, when you need to wrap a function to inject debugging code.

It is also helpful to force early loading of code before forking to make use of copy-on-write as much as

possible.

Starting with AutoLoader 5.73, you can call the "AutoLoader::autoload_sub" function with the fully-

qualified name of the function to load from its .al file. The behaviour is exactly the same as if you

called the function, triggering the regular "AUTOLOAD" mechanism, but it does not actually execute

the autoloaded function.

AutoLoader(3) Perl Programmers Reference Guide AutoLoader(3)

perl v5.34.3 2023-11-28 AutoLoader(3)

CAVEATS
AutoLoaders prior to Perl 5.002 had a slightly different interface. Any old modules which use

AutoLoader should be changed to the new calling style. Typically this just means changing a require

to a use, adding the explicit ’AUTOLOAD’ import if needed, and removing AutoLoader from @ISA.

On systems with restrictions on file name length, the file corresponding to a subroutine may have a

shorter name that the routine itself. This can lead to conflicting file names. The AutoSplit package

warns of these potential conflicts when used to split a module.

AutoLoader may fail to find the autosplit files (or even find the wrong ones) in cases where @INC

contains relative paths, and the program does "chdir".

SEE ALSO
SelfLoader - an autoloader that doesn’t use external files.

AUTHOR
"AutoLoader" is maintained by the perl5-porters. Please direct any questions to the canonical mailing

list. Anything that is applicable to the CPAN release can be sent to its maintainer, though.

Author and Maintainer: The Perl5-Porters <perl5-porters@perl.org>

Maintainer of the CPAN release: Steffen Mueller <smueller@cpan.org>

COPYRIGHT AND LICENSE
This package has been part of the perl core since the first release of perl5. It has been released

separately to CPAN so older installations can benefit from bug fixes.

This package has the same copyright and license as the perl core:

Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,

2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,

2011, 2012, 2013

by Larry Wall and others

All rights reserved.

This program is free software; you can redistribute it and/or modify

it under the terms of either:

a) the GNU General Public License as published by the Free

AutoLoader(3) Perl Programmers Reference Guide AutoLoader(3)

perl v5.34.3 2023-11-28 AutoLoader(3)

Software Foundation; either version 1, or (at your option) any

later version, or

b) the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either

the GNU General Public License or the Artistic License for more details.

You should have received a copy of the Artistic License with this

Kit, in the file named "Artistic". If not, I’ll be glad to provide one.

You should also have received a copy of the GNU General Public License

along with this program in the file named "Copying". If not, write to the

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,

MA 02110-1301, USA or visit their web page on the internet at

http://www.gnu.org/copyleft/gpl.html.

For those of you that choose to use the GNU General Public License,

my interpretation of the GNU General Public License is that no Perl

script falls under the terms of the GPL unless you explicitly put

said script under the terms of the GPL yourself. Furthermore, any

object code linked with perl does not automatically fall under the

terms of the GPL, provided such object code only adds definitions

of subroutines and variables, and does not otherwise impair the

resulting interpreter from executing any standard Perl script. I

consider linking in C subroutines in this manner to be the moral

equivalent of defining subroutines in the Perl language itself. You

may sell such an object file as proprietary provided that you provide

or offer to provide the Perl source, as specified by the GNU General

Public License. (This is merely an alternate way of specifying input

to the program.) You may also sell a binary produced by the dumping of

a running Perl script that belongs to you, provided that you provide or

offer to provide the Perl source as specified by the GPL. (The

fact that a Perl interpreter and your code are in the same binary file

is, in this case, a form of mere aggregation.) This is my interpretation

of the GPL. If you still have concerns or difficulties understanding

my intent, feel free to contact me. Of course, the Artistic License

spells all this out for your protection, so you may prefer to use that.

AutoLoader(3) Perl Programmers Reference Guide AutoLoader(3)

perl v5.34.3 2023-11-28 AutoLoader(3)

