
NAME
BIO_s_secmem, BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf,

BIO_get_mem_ptr, BIO_new_mem_buf - memory BIO

SYNOPSIS
#include <openssl/bio.h>

const BIO_METHOD *BIO_s_mem(void);

const BIO_METHOD *BIO_s_secmem(void);

BIO_set_mem_eof_return(BIO *b, int v);

long BIO_get_mem_data(BIO *b, char **pp);

BIO_set_mem_buf(BIO *b, BUF_MEM *bm, int c);

BIO_get_mem_ptr(BIO *b, BUF_MEM **pp);

BIO *BIO_new_mem_buf(const void *buf, int len);

DESCRIPTION
BIO_s_mem() returns the memory BIO method function.

A memory BIO is a source/sink BIO which uses memory for its I/O. Data written to a memory BIO is

stored in a BUF_MEM structure which is extended as appropriate to accommodate the stored data.

BIO_s_secmem() is like BIO_s_mem() except that the secure heap is used for buffer storage.

Any data written to a memory BIO can be recalled by reading from it. Unless the memory BIO is read

only any data read from it is deleted from the BIO.

Memory BIOs support BIO_gets() and BIO_puts().

If the BIO_CLOSE flag is set when a memory BIO is freed then the underlying BUF_MEM structure is

also freed.

Calling BIO_reset() on a read write memory BIO clears any data in it if the flag

BIO_FLAGS_NONCLEAR_RST is not set, otherwise it just restores the read pointer to the state it was

just after the last write was performed and the data can be read again. On a read only BIO it similarly

restores the BIO to its original state and the read only data can be read again.

BIO_eof() is true if no data is in the BIO.

BIO_S_MEM(3ossl) OpenSSL BIO_S_MEM(3ossl)

3.0.11 2023-09-19 BIO_S_MEM(3ossl)

BIO_ctrl_pending() returns the number of bytes currently stored.

BIO_set_mem_eof_return() sets the behaviour of memory BIO b when it is empty. If the v is zero then

an empty memory BIO will return EOF (that is it will return zero and BIO_should_retry(b) will be

false. If v is non zero then it will return v when it is empty and it will set the read retry flag (that is

BIO_read_retry(b) is true). To avoid ambiguity with a normal positive return value v should be set to a

negative value, typically -1.

BIO_get_mem_data() sets *pp to a pointer to the start of the memory BIOs data and returns the total

amount of data available. It is implemented as a macro. Note the pointer returned by this call is

informative, no transfer of ownership of this memory is implied. See notes on BIO_set_close().

BIO_set_mem_buf() sets the internal BUF_MEM structure to bm and sets the close flag to c, that is c
should be either BIO_CLOSE or BIO_NOCLOSE. It is a macro.

BIO_get_mem_ptr() places the underlying BUF_MEM structure in *pp. It is a macro.

BIO_new_mem_buf() creates a memory BIO using len bytes of data at buf, if len is -1 then the buf is

assumed to be nul terminated and its length is determined by strlen. The BIO is set to a read only state

and as a result cannot be written to. This is useful when some data needs to be made available from a

static area of memory in the form of a BIO. The supplied data is read directly from the supplied buffer:

it is not copied first, so the supplied area of memory must be unchanged until the BIO is freed.

NOTES
Writes to memory BIOs will always succeed if memory is available: that is their size can grow

indefinitely.

Every write after partial read (not all data in the memory buffer was read) to a read write memory BIO

will have to move the unread data with an internal copy operation, if a BIO contains a lot of data and it

is read in small chunks intertwined with writes the operation can be very slow. Adding a buffering BIO

to the chain can speed up the process.

Calling BIO_set_mem_buf() on a BIO created with BIO_new_secmem() will give undefined results,

including perhaps a program crash.

Switching the memory BIO from read write to read only is not supported and can give undefined

results including a program crash. There are two notable exceptions to the rule. The first one is to

assign a static memory buffer immediately after BIO creation and set the BIO as read only.

The other supported sequence is to start with read write BIO then temporarily switch it to read only and

BIO_S_MEM(3ossl) OpenSSL BIO_S_MEM(3ossl)

3.0.11 2023-09-19 BIO_S_MEM(3ossl)

call BIO_reset() on the read only BIO immediately before switching it back to read write. Before the

BIO is freed it must be switched back to the read write mode.

Calling BIO_get_mem_ptr() on read only BIO will return a BUF_MEM that contains only the

remaining data to be read. If the close status of the BIO is set to BIO_NOCLOSE, before freeing the

BUF_MEM the data pointer in it must be set to NULL as the data pointer does not point to an allocated

memory.

Calling BIO_reset() on a read write memory BIO with BIO_FLAGS_NONCLEAR_RST flag set can

have unexpected outcome when the reads and writes to the BIO are intertwined. As documented above

the BIO will be reset to the state after the last completed write operation. The effects of reads preceding

that write operation cannot be undone.

Calling BIO_get_mem_ptr() prior to a BIO_reset() call with BIO_FLAGS_NONCLEAR_RST set has

the same effect as a write operation.

Calling BIO_set_close() with BIO_NOCLOSE orphans the BUF_MEM internal to the BIO, _not_ its

actual data buffer. See the examples section for the proper method for claiming ownership of the data

pointer for a deferred free operation.

BUGS
There should be an option to set the maximum size of a memory BIO.

RETURN VALUES
BIO_s_mem() and BIO_s_secmem() return a valid memory BIO_METHOD structure.

BIO_set_mem_eof_return(), BIO_set_mem_buf() and BIO_get_mem_ptr() return 1 on success or a

value which is less than or equal to 0 if an error occurred.

BIO_get_mem_data() returns the total number of bytes available on success, 0 if b is NULL, or a

negative value in case of other errors.

BIO_new_mem_buf() returns a valid BIO structure on success or NULL on error.

EXAMPLES
Create a memory BIO and write some data to it:

BIO *mem = BIO_new(BIO_s_mem());

BIO_puts(mem, "Hello World\n");

BIO_S_MEM(3ossl) OpenSSL BIO_S_MEM(3ossl)

3.0.11 2023-09-19 BIO_S_MEM(3ossl)

Create a read only memory BIO:

char data[] = "Hello World";

BIO *mem = BIO_new_mem_buf(data, -1);

Extract the BUF_MEM structure from a memory BIO and then free up the BIO:

BUF_MEM *bptr;

BIO_get_mem_ptr(mem, &bptr);

BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */

BIO_free(mem);

Extract the BUF_MEM ptr, claim ownership of the internal data and free the BIO and BUF_MEM

structure:

BUF_MEM *bptr;

char *data;

BIO_get_mem_data(bio, &data);

BIO_get_mem_ptr(bio, &bptr);

BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free orphans BUF_MEM */

BIO_free(bio);

bptr->data = NULL; /* Tell BUF_MEM to orphan data */

BUF_MEM_free(bptr);

...

free(data);

COPYRIGHT
Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

BIO_S_MEM(3ossl) OpenSSL BIO_S_MEM(3ossl)

3.0.11 2023-09-19 BIO_S_MEM(3ossl)

