BIO_F SSL(30sd) OpenSSL BIO_F SSL(3o0sd)

NAME
BIO_do_handshake, BIO f sdl, BIO set sdl, BIO get sdl, BIO set sd_mode,
BIO_set sd renegotiate bytes, BIO_get num_renegotiates, BIO_set_sd_renegotiate timeout,
BIO new_sd, BIO new_sd_connect, BIO_new buffer_ssl_connect, BIO_sdl_copy_session id,
BIO_sd_shutdown - SSL BIO

SYNOPSIS
#include <openssl/bio.h>
#include <openssl/ssl.h>

const BIO_ METHOD *BIO f _sdl(void);

long BIO_set_sd(BIO *b, SSL *sd, long ¢);

long BIO_get_sd(BIO *b, SSL **sdlp);

long BIO_set_sd_mode(BIO *b, long client);

long BIO_set_sd_renegatiate bytes(BIO *b, long numy;

long BIO_set_sdl_renegotiate timeout(BIO *b, long seconds);
long BIO_get_num_renegotiates(BIO *b);

BIO*BIO_new_ssl(SSL_CTX *ctx, int client);

BIO *BIO_new_sd_connect(SSL_CTX *ctx);

BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
int BIO_ssl_copy_session_id(BIO *to, BIO *from);
void BIO_sd_shutdown(BIO *hio);

long BIO_do_handshake(BIO *b);

DESCRIPTION
BIO_f_sdl() returnsthe SSL BIO method. Thisisafilter BIO which is awrapper round the OpenSSL
SSL routines adding aBIO "flavour” to SSL 1/0.
1/O performed on an SSL BIO communicates using the SSL protocol with the SSLs read and write
BIOs. If an SSL connection is not established then an attempt is made to establish one on thefirst 110
cal.

If aBIO isappended to an SSL BIO using BIO_push() it isautomatically used as the SSL BIOs read
and write BIOs.

Calling BIO_reset() on an SSL BIO closes down any current SSL connection by calling
SSL_shutdown(). BIO_reset() isthen sent to the next BIO in the chain: thiswill typically disconnect

3.0.11 2023-09-19 BIO_F_SSL(30ss)

BIO_F SSL(3o0sd) OpenSSL BIO_F SSL(30sd)

the underlying transport. The SSL BIO is then reset to the initial accept or connect state.

If the close flag is set when an SSL BIO isfreed then theinternal SSL structure is also freed using
SSL_free().

BIO_set_sdl() setstheinternal SSL pointer of SSL BIO b to sdl using the close flag c.

BIO_get_sdl() retrieves the SSL pointer of SSL BIO b, it can then be manipulated using the standard
SSL library functions.

BIO_set ss mode() setsthe SSL BIO modeto client. If client is 1 client mode is set. If client isO
server modeis set.

BIO_set_sd_renegotiate bytes() setsthe renegotiate byte count of SSL BIO b to num. When set after
every num bytes of 1/O (read and write) the SSL session is automatically renegotiated. num must be at
least 512 bytes.

BIO_set_ss renegotiate timeout() sets the renegotiate timeout of SSL BIO b to seconds. When the
renegotiate timeout elapses the session is automatically renegotiated.

BIO_get_num_renegotiates() returns the total number of session renegotiations due to I/O or timeout of
SSL BIO b.

BIO_new_sd() alocates an SSL BIO using SSL_CTX ctx and using client mode if client is non zero.

BIO_new_ss_connect() creates anew BIO chain consisting of an SSL BIO (using ctx) followed by a
connect BIO.

BIO_new_buffer_ss connect() creates anew BIO chain consisting of a buffering BIO, an SSL BIO
(using ctx), and a connect BIO.

BIO_sd_copy_session_id() copiesan SSL session id between BIO chains from and to. It does this by
locating the SSL BIOs in each chain and calling SSL _copy_session_id() on the internal SSL pointer.

BIO_ss_shutdown() closes down an SSL connection on BIO chain bio. It does this by locating the SSL
BlO inthe chain and calling SSL_shutdown() onitsinternal SSL pointer.

BI1O_do_handshake() attempts to complete an SSL handshake on the supplied BIO and establish the

SSL connection. For non-SSL BIOs the connection is done typically at TCP level. If domain name
resolution yields multiple |P addresses all of them are tried after connect() failures. The function

3.0.11 2023-09-19 BIO_F_SSL(30ss)

BIO_F SSL(3o0sd) OpenSSL BIO_F SSL(30sd)

returns 1 if the connection was established successfully. A zero or negative value is returned if the
connection could not be established. The call BIO_should_retry() should be used for nonblocking
connect BIOsto determine if the call should beretried. If aconnection has aready been established
this call has no effect.

NOTES
SSL BlOs are exceptional in that if the underlying transport is non blocking they can still request a
retry in exceptional circumstances. Specifically thiswill happen if a session renegotiation takes place
during aBIO_read_ex() operation, one case where this happens is when step up occurs.

The SSL flag SSL_ AUTO_RETRY can be set to disable this behaviour. That iswhen thisflag is set an
SSL BIO using a blocking transport will never request aretry.

Since unknown Bl O_ctrl() operations are sent through filter BIOs the servers name and port can be set
using BIO_set_host() on the BIO returned by BIO_new_ssl_connect() without having to locate the
connect BIO first.

Applications do not have to call BIO_do_handshake() but may wish to do so to separate the handshake
process from other /O processing.

BIO_set_ssl(), BIO_get_ssl(), BIO_set_ss_mode(), BIO_set_ssl_renegotiate bytes(),
BIO_set_sd_renegotiate_timeout(), BIO_get_num_renegotiates(), and BIO_do_handshake() are

implemented as macros.

RETURN VALUES
BIO_f sdl() returnsthe SSL BIO_METHOD structure.

BIO_set_ss(), BIO get_ssl(), BIO set_ss_mode(), BIO set_ss renegotiate bytes(),
BIO_set_sd renegotiate timeout() and BIO_get_num_renegotiates() return 1 on success or avalue

which isless than or equal to O if an error occurred.

BIO_new_sd(), BIO _new_ss_connect() and BIO_new_buffer_sd_connect() return avalid BIO
structure on success or NULL if an error occurred.

BIO_ssl_copy_session_id() returns 1 on success or O on error.

BIO_do_handshake() returns 1 if the connection was established successfully. A zero or negative
valueisreturned if the connection could not be established.

EXAMPLES

3.0.11 2023-09-19 BIO_F_SSL(30ss)

BIO_F SSL(30sd) OpenSSL BIO_F SSL(30sd)

This SSL/TLS client example attemptsto retrieve a page from an SSL/TLS web server. The 1/O
routines are identical to those of the unencrypted examplein BIO_s connect(3).

BIO *shio, *oult;
int len;

char tmpbuf[1024];
SSL_CTX *ctx;
SSL *sd;

[* XXX Seed the PRNG if needed. */
ctx =SSL_CTX_new(TLS client_method());
[* XXX Set verify paths and mode here. */

shio = BIO_new_ssl_connect(ctx);
BIO_get_sd(shio, &sd);
if (ssl ==NULL){
fprintf(stderr, "Can't locate SSL pointer\n');
ERR print_errors fp(stderr);
exit(1);
}

/* XXX We might want to do other things with ssl here */

/* An empty host part means the loopback address */
BIO_set_conn_hostname(shio, ":https');

out = BIO_new_fp(stdout, BIO_NOCLOSE);

if (BIO_do_connect(shio) <=0) {
fprintf(stderr, "Error connecting to server\n);
ERR_print_errors_fp(stderr);
exit(1);

}

/* XXX Could examine ssl here to get connection info */
BIO_puts(shio, "GET / HTTP/1.0\n\n");

for (;;){
len = BIO_read(shio, tmpbuf, 1024);

3.0.11 2023-09-19 BIO_F_SSL(30ss)

BIO_F SSL(30sd) OpenSSL BIO_F SSL(3o0sd)

if len<=0)
break;
BI1O_write(out, tmpbuf, len);
}
BIO_free al(shio);
BIO_free(out);

Hereisasimple server example. It makes use of abuffering BIO to alow lines to be read from the SSL
BIO using BIO_gets. It creates a pseudo web page containing the actual request from a client and also
echoes the request to standard output.

BIO *shio, *bbio, *acpt, *out;
intlen;

char tmpbuf[1024];
SSL_CTX *ctx;

SSL *sdl;

I* XXX Seed the PRNG if needed. */

ctx =SSL_CTX_new(TLS server_method());
if (SSL_CTX_use_certificate file(ctx, "server.pem”, SSL_FILETYPE_PEM)
||'SSL_CTX_use PrivateKey_file(ctx, "server.pem”, SSL_FILETYPE_PEM)
|| 'SSL_CTX_check_private key(ctx)) {
fprintf(stderr, "Error setting up SSL_CTX\n");
ERR_print_errors _fp(stderr);
exit(1);
}

/¥ XXX Other things like set verify locations, EDH temp callbacks. */

/* New SSL BIO setup as server */
shio = BIO_new_sdl(ctx, 0);
BIO_get_sd(shio, &sd);
if (ssl ==NULL){
fprintf(stderr, "Can't locate SSL pointer\n');
ERR print_errors fp(stderr);
exit(1);
}

bbio = BIO_new(BIO_f_buffer());

3.0.11 2023-09-19 BIO_F_SSL(30ss)

BIO_F SSL(30sd) OpenSSL BIO_F SSL(3o0sd)

shio = BIO_push(bbio, shio);
acpt = BIO_new_accept("4433");

/*

* By doing this when a new connection is established

* we automatically have shio inserted into it. The

* BIO chain isnow 'swallowed’ by the accept BIO and
* will be freed when the accept BIO is freed.

*/

BIO_set accept bios(acpt, sbio);

out = BIO_new_fp(stdout, BIO_NOCLOSE);

/* First call to BIO_do_accept() sets up accept BIO */
if (BIO_do_accept(acpt) <=0) {
fprintf(stderr, "Error setting up accept BIO\n");
ERR_print_errors_fp(stderr);
exit(1);
}

/* Second call to BIO_do_accept() waits for incoming connection */
if (BIO_do_accept(acpt) <=0) {
fprintf(stderr, "Error accepting connection\n);
ERR_print_errors_fp(stderr);
exit(L);
}

/* We only want one connection so remove and free accept BIO */
shio = BIO_pop(acpt);
BIO_free al(acpt);

if (BIO_do_handshake(shio) <= 0) {
fprintf(stderr, "Error in SSL handshake\n");
ERR_print_errors _fp(stderr);
exit(1);

}

BIO_puts(shio, "HTTP/1.0 200 OK\r\nContent-type: text/plain\r\n\r\n"*);
BIO_puts(shio, "\r'\nConnection Established\r\nRequest headers:\r\n");
BIO_puts(shio, " \r\n");

3.0.11 2023-09-19 BIO_F_SSL(30ss)

BIO_F SSL(3o0sdl) OpenSSL BIO_F SSL(3o0sd)

for ;) {
len = BIO_gets(shio, tmpbuf, 1024);
if len<=0)
break;
BIO_write(sbio, tmpbuf, len);
BI1O_write(out, tmpbuf, len);
/* Look for blank line signifying end of headers*/
if (tmpbuf[0] =="\r" || tmpbuf[0] =="\n")
break;

BIO_puts(shio, " \r\n™);
BIO_puts(shio, "\r\n");

BIO_flush(sbio);

BIO_free_al(sbio);

HISTORY
In OpenSSL before 1.0.0 the BIO_pop() call was handled incorrectly, the I/0O BIO reference count was
incorrectly incremented (instead of decremented) and dissociated with the SSL BIO even if the SSL
BIO was not explicitly being popped (e.g. a pop higher up the chain). Applications which included
workarounds for this bug (e.g. freeing BIOs more than once) should be modified to handle thisfix or
they may free up an already freed BIO.

COPYRIGHT
Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use thisfile except in

compliance with the License. Y ou can obtain a copy in the file LICENSE in the source distribution or
at <https://www.openssl.org/source/license.html>.

3.0.11 2023-09-19 BIO_F_SSL(30ss)

