
NAME
Clone - recursively copy Perl datatypes

SYNOPSIS
use Clone ’clone’;

my $data = {

set => [1 .. 50],

foo => {

answer => 42,

object => SomeObject->new,

},

};

my $cloned_data = clone($data);

$cloned_data->{foo}{answer} = 1;

print $cloned_data->{foo}{answer}; # ’1’

print $data->{foo}{answer}; # ’42’

You can also add it to your class:

package Foo;

use parent ’Clone’;

sub new { bless {}, shift }

package main;

my $obj = Foo->new;

my $copy = $obj->clone;

DESCRIPTION
This module provides a "clone()" method which makes recursive copies of nested hash, array, scalar

and reference types, including tied variables and objects.

"clone()" takes a scalar argument and duplicates it. To duplicate lists, arrays or hashes, pass them in by

reference, e.g.

my $copy = clone (\@array);

Clone(3) User Contributed Perl Documentation Clone(3)

perl v5.34.3 2022-10-18 Clone(3)

or

my %copy = %{ clone (\%hash) };

SEE ALSO
Storable’s "dclone()" is a flexible solution for cloning variables, albeit slower for average-sized data

structures. Simple and naive benchmarks show that Clone is faster for data structures with 3 or fewer

levels, while "dclone()" can be faster for structures 4 or more levels deep.

COPYRIGHT
Copyright 2001-2022 Ray Finch. All Rights Reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl

itself.

AUTHOR
Ray Finch "<rdf@cpan.org>"

Breno G. de Oliveira "<garu@cpan.org>", Nicolas Rochelemagne "<atoomic@cpan.org>" and Florian

Ragwitz "<rafl@debian.org>" perform routine maintenance releases since 2012.

Clone(3) User Contributed Perl Documentation Clone(3)

perl v5.34.3 2022-10-18 Clone(3)

