
NAME
DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, DES_set_key_unchecked,

DES_set_odd_parity, DES_is_weak_key, DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt,

DES_ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,

DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, DES_ede2_cfb64_encrypt,

DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt, DES_ede3_cfb64_encrypt,

DES_ede3_ofb64_encrypt, DES_cbc_cksum, DES_quad_cksum, DES_string_to_key,

DES_string_to_2keys, DES_fcrypt, DES_crypt - DES encryption

SYNOPSIS
#include <openssl/des.h>

The following functions have been deprecated since OpenSSL 3.0, and can be hidden entirely by

defining OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros(7):

void DES_random_key(DES_cblock *ret);

int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);

int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);

int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule);

void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule);

void DES_set_odd_parity(DES_cblock *key);

int DES_is_weak_key(const_DES_cblock *key);

void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,

DES_key_schedule *ks, int enc);

void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,

DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);

void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,

DES_key_schedule *ks1, DES_key_schedule *ks2,

DES_key_schedule *ks3, int enc);

void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,

long length, DES_key_schedule *schedule, DES_cblock *ivec,

int enc);

void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,

int numbits, long length, DES_key_schedule *schedule,

DES_cblock *ivec, int enc);

void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,

DES_RANDOM_KEY(3ossl) OpenSSL DES_RANDOM_KEY(3ossl)

3.0.11 2023-09-19 DES_RANDOM_KEY(3ossl)



int numbits, long length, DES_key_schedule *schedule,

DES_cblock *ivec);

void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,

long length, DES_key_schedule *schedule, DES_cblock *ivec,

int enc);

void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *schedule, DES_cblock *ivec,

int *num, int enc);

void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *schedule, DES_cblock *ivec,

int *num);

void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,

long length, DES_key_schedule *schedule, DES_cblock *ivec,

const_DES_cblock *inw, const_DES_cblock *outw, int enc);

void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output,

long length, DES_key_schedule *ks1,

DES_key_schedule *ks2, DES_cblock *ivec, int enc);

void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *ks1,

DES_key_schedule *ks2, DES_cblock *ivec,

int *num, int enc);

void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *ks1,

DES_key_schedule *ks2, DES_cblock *ivec, int *num);

void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output,

long length, DES_key_schedule *ks1,

DES_key_schedule *ks2, DES_key_schedule *ks3,

DES_cblock *ivec, int enc);

void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *ks1,

DES_key_schedule *ks2, DES_key_schedule *ks3,

DES_cblock *ivec, int *num, int enc);

void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *ks1,

DES_key_schedule *ks2, DES_key_schedule *ks3,

DES_cblock *ivec, int *num);

DES_RANDOM_KEY(3ossl) OpenSSL DES_RANDOM_KEY(3ossl)

3.0.11 2023-09-19 DES_RANDOM_KEY(3ossl)



DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,

long length, DES_key_schedule *schedule,

const_DES_cblock *ivec);

DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],

long length, int out_count, DES_cblock *seed);

void DES_string_to_key(const char *str, DES_cblock *key);

void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2);

char *DES_fcrypt(const char *buf, const char *salt, char *ret);

char *DES_crypt(const char *buf, const char *salt);

DESCRIPTION
All of the functions described on this page are deprecated. Applications should instead use

EVP_EncryptInit_ex(3), EVP_EncryptUpdate(3) and EVP_EncryptFinal_ex(3) or the equivalently

named decrypt functions.

This library contains a fast implementation of the DES encryption algorithm.

There are two phases to the use of DES encryption. The first is the generation of a DES_key_schedule

from a key, the second is the actual encryption. A DES key is of type DES_cblock. This type consists

of 8 bytes with odd parity. The least significant bit in each byte is the parity bit. The key schedule is

an expanded form of the key; it is used to speed the encryption process.

DES_random_key() generates a random key. The random generator must be seeded when calling this

function. If the automatic seeding or reseeding of the OpenSSL CSPRNG fails due to external

circumstances (see RAND(7)), the operation will fail. If the function fails, 0 is returned.

Before a DES key can be used, it must be converted into the architecture dependent

DES_key_schedule via the DES_set_key_checked() or DES_set_key_unchecked() function.

DES_set_key_checked() will check that the key passed is of odd parity and is not a weak or semi-weak

key. If the parity is wrong, then -1 is returned. If the key is a weak key, then -2 is returned. If an error

is returned, the key schedule is not generated.

DES_set_key() works like DES_set_key_checked() and remains for backward compatibility.

DES_set_odd_parity() sets the parity of the passed key to odd.

DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it is ok.

DES_RANDOM_KEY(3ossl) OpenSSL DES_RANDOM_KEY(3ossl)

3.0.11 2023-09-19 DES_RANDOM_KEY(3ossl)



The following routines mostly operate on an input and output stream of DES_cblocks.

DES_ecb_encrypt() is the basic DES encryption routine that encrypts or decrypts a single 8-byte

DES_cblock in electronic code book (ECB) mode. It always transforms the input data, pointed to by

input, into the output data, pointed to by the output argument. If the encrypt argument is nonzero

(DES_ENCRYPT), the input (cleartext) is encrypted in to the output (ciphertext) using the

key_schedule specified by the schedule argument, previously set via DES_set_key. If encrypt is zero

(DES_DECRYPT), the input (now ciphertext) is decrypted into the output (now cleartext). Input and

output may overlap. DES_ecb_encrypt() does not return a value.

DES_ecb3_encrypt() encrypts/decrypts the input block by using three-key Triple-DES encryption in

ECB mode. This involves encrypting the input with ks1, decrypting with the key schedule ks2, and

then encrypting with ks3. This routine greatly reduces the chances of brute force breaking of DES and

has the advantage of if ks1, ks2 and ks3 are the same, it is equivalent to just encryption using ECB

mode and ks1 as the key.

The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES encryption by using ks1

for the final encryption.

DES_ncbc_encrypt() encrypts/decrypts using the cipher-block-chaining (CBC) mode of DES. If the

encrypt argument is nonzero, the routine cipher-block-chain encrypts the cleartext data pointed to by

the input argument into the ciphertext pointed to by the output argument, using the key schedule

provided by the schedule argument, and initialization vector provided by the ivec argument. If the

length argument is not an integral multiple of eight bytes, the last block is copied to a temporary area

and zero filled. The output is always an integral multiple of eight bytes.

DES_xcbc_encrypt() is RSA’s DESX mode of DES. It uses inw and outw to ’whiten’ the encryption.

inw and outw are secret (unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes.

This is much better than CBC DES.

DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with three keys. This means

that each DES operation inside the CBC mode is "C=E(ks3,D(ks2,E(ks1,M)))". This mode is used by

SSL.

The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by reusing ks1 for the final

encryption. "C=E(ks1,D(ks2,E(ks1,M)))". This form of Triple-DES is used by the RSAREF library.

DES_pcbc_encrypt() encrypts/decrypts using the propagating cipher block chaining mode used by

Kerberos v4. Its parameters are the same as DES_ncbc_encrypt().

DES_RANDOM_KEY(3ossl) OpenSSL DES_RANDOM_KEY(3ossl)

3.0.11 2023-09-19 DES_RANDOM_KEY(3ossl)



DES_cfb_encrypt() encrypts/decrypts using cipher feedback mode. This method takes an array of

characters as input and outputs an array of characters. It does not require any padding to 8 character

groups. Note: the ivec variable is changed and the new changed value needs to be passed to the next

call to this function. Since this function runs a complete DES ECB encryption per numbits, this

function is only suggested for use when sending a small number of characters.

DES_cfb64_encrypt() implements CFB mode of DES with 64-bit feedback. Why is this useful you

ask? Because this routine will allow you to encrypt an arbitrary number of bytes, without 8 byte

padding. Each call to this routine will encrypt the input bytes to output and then update ivec and num.

num contains ’how far’ we are though ivec. If this does not make much sense, read more about CFB

mode of DES.

DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as DES_cfb64_encrypt()
except that Triple-DES is used.

DES_ofb_encrypt() encrypts using output feedback mode. This method takes an array of characters as

input and outputs an array of characters. It does not require any padding to 8 character groups. Note:

the ivec variable is changed and the new changed value needs to be passed to the next call to this

function. Since this function runs a complete DES ECB encryption per numbits, this function is only

suggested for use when sending a small number of characters.

DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output Feed Back mode.

DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as DES_ofb64_encrypt(),
using Triple-DES.

The following functions are included in the DES library for compatibility with the MIT Kerberos

library.

DES_cbc_cksum() produces an 8 byte checksum based on the input stream (via CBC encryption). The

last 4 bytes of the checksum are returned and the complete 8 bytes are placed in output. This function is

used by Kerberos v4. Other applications should use EVP_DigestInit(3) etc. instead.

DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte checksum from the input bytes. The

algorithm can be iterated over the input, depending on out_count, 1, 2, 3 or 4 times. If output is non-

NULL, the 8 bytes generated by each pass are written into output.

The following are DES-based transformations:

DES_fcrypt() is a fast version of the Unix crypt(3) function. This version takes only a small amount of

DES_RANDOM_KEY(3ossl) OpenSSL DES_RANDOM_KEY(3ossl)

3.0.11 2023-09-19 DES_RANDOM_KEY(3ossl)



space relative to other fast crypt() implementations. This is different to the normal crypt() in that the

third parameter is the buffer that the return value is written into. It needs to be at least 14 bytes long.

This function is thread safe, unlike the normal crypt().

DES_crypt() is a faster replacement for the normal system crypt(). This function calls DES_fcrypt()
with a static array passed as the third parameter. This mostly emulates the normal non-thread-safe

semantics of crypt(3). The salt must be two ASCII characters.

The values returned by DES_fcrypt() and DES_crypt() are terminated by NUL character.

DES_enc_write() writes len bytes to file descriptor fd from buffer buf. The data is encrypted via

pcbc_encrypt (default) using sched for the key and iv as a starting vector. The actual data send down

fd consists of 4 bytes (in network byte order) containing the length of the following encrypted data.

The encrypted data then follows, padded with random data out to a multiple of 8 bytes.

BUGS
DES_cbc_encrypt() does not modify ivec; use DES_ncbc_encrypt() instead.

DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits. What this means is that if you

set numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and the low half of

the second input byte. The second 12 bits will have the low 8 bits taken from the 3rd input byte and the

top 4 bits taken from the 4th input byte. The same holds for output. This function has been

implemented this way because most people will be using a multiple of 8 and because once you get into

pulling bytes input bytes apart things get ugly!

DES_string_to_key() is available for backward compatibility with the MIT library. New applications

should use a cryptographic hash function. The same applies for DES_string_to_2key().

NOTES
The des library was written to be source code compatible with the MIT Kerberos library.

Applications should use the higher level functions EVP_EncryptInit(3) etc. instead of calling these

functions directly.

Single-key DES is insecure due to its short key size. ECB mode is not suitable for most applications;

see des_modes(7).

RETURN VALUES
DES_set_key(), DES_key_sched(), and DES_set_key_checked() return 0 on success or negative values

on error.

DES_RANDOM_KEY(3ossl) OpenSSL DES_RANDOM_KEY(3ossl)

3.0.11 2023-09-19 DES_RANDOM_KEY(3ossl)



DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it is ok.

DES_cbc_cksum() and DES_quad_cksum() return 4-byte integer representing the last 4 bytes of the

checksum of the input.

DES_fcrypt() returns a pointer to the caller-provided buffer and DES_crypt() - to a static buffer on

success; otherwise they return NULL.

SEE ALSO
des_modes(7), EVP_EncryptInit(3)

HISTORY
All of these functions were deprecated in OpenSSL 3.0.

The requirement that the salt parameter to DES_crypt() and DES_fcrypt() be two ASCII characters was

first enforced in OpenSSL 1.1.0. Previous versions tried to use the letter uppercase A if both character

were not present, and could crash when given non-ASCII on some platforms.

COPYRIGHT
Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

DES_RANDOM_KEY(3ossl) OpenSSL DES_RANDOM_KEY(3ossl)

3.0.11 2023-09-19 DES_RANDOM_KEY(3ossl)


