
NAME
DynaLoader - Dynamically load C libraries into Perl code

SYNOPSIS
package YourPackage;

require DynaLoader;

@ISA = qw(... DynaLoader ...);

__PACKAGE__->bootstrap;

optional method for ’global’ loading

sub dl_load_flags { 0x01 }

DESCRIPTION
This document defines a standard generic interface to the dynamic linking mechanisms available on

many platforms. Its primary purpose is to implement automatic dynamic loading of Perl modules.

This document serves as both a specification for anyone wishing to implement the DynaLoader for a

new platform and as a guide for anyone wishing to use the DynaLoader directly in an application.

The DynaLoader is designed to be a very simple high-level interface that is sufficiently general to

cover the requirements of SunOS, HP-UX, Linux, VMS and other platforms.

It is also hoped that the interface will cover the needs of OS/2, NT etc and also allow pseudo-dynamic

linking (using "ld -A" at runtime).

It must be stressed that the DynaLoader, by itself, is practically useless for accessing non-Perl libraries

because it provides almost no Perl-to-C ’glue’. There is, for example, no mechanism for calling a C

library function or supplying arguments. A C::DynaLib module is available from CPAN sites which

performs that function for some common system types. And since the year 2000, there’s also Inline::C,

a module that allows you to write Perl subroutines in C. Also available from your local CPAN site.

DynaLoader Interface Summary

@dl_library_path

@dl_resolve_using

@dl_require_symbols

$dl_debug

$dl_dlext

@dl_librefs

@dl_modules

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

@dl_shared_objects

Implemented in:

bootstrap($modulename) Perl

@filepaths = dl_findfile(@names) Perl

$flags = $modulename->dl_load_flags Perl

$symref = dl_find_symbol_anywhere($symbol) Perl

$libref = dl_load_file($filename, $flags) C

$status = dl_unload_file($libref) C

$symref = dl_find_symbol($libref, $symbol) C

@symbols = dl_undef_symbols() C

dl_install_xsub($name, $symref [, $filename]) C

$message = dl_error C

@dl_library_path

The standard/default list of directories in which dl_findfile() will search for libraries etc.

Directories are searched in order: $dl_library_path[0], [1], ... etc

@dl_library_path is initialised to hold the list of ’normal’ directories (/usr/lib, etc) determined by

Configure ($Config{’libpth’}). This should ensure portability across a wide range of platforms.

@dl_library_path should also be initialised with any other directories that can be determined from

the environment at runtime (such as LD_LIBRARY_PATH for SunOS).

After initialisation @dl_library_path can be manipulated by an application using push and unshift

before calling dl_findfile(). Unshift can be used to add directories to the front of the search order

either to save search time or to override libraries with the same name in the ’normal’ directories.

The load function that dl_load_file() calls may require an absolute pathname. The dl_findfile()
function and @dl_library_path can be used to search for and return the absolute pathname for the

library/object that you wish to load.

@dl_resolve_using

A list of additional libraries or other shared objects which can be used to resolve any undefined

symbols that might be generated by a later call to load_file().

This is only required on some platforms which do not handle dependent libraries automatically.

For example the Socket Perl extension library (auto/Socket/Socket.so) contains references to

many socket functions which need to be resolved when it’s loaded. Most platforms will

automatically know where to find the ’dependent’ library (e.g., /usr/lib/libsocket.so). A few

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

platforms need to be told the location of the dependent library explicitly. Use @dl_resolve_using

for this.

Example usage:

@dl_resolve_using = dl_findfile(’-lsocket’);

@dl_require_symbols

A list of one or more symbol names that are in the library/object file to be dynamically loaded.

This is only required on some platforms.

@dl_librefs

An array of the handles returned by successful calls to dl_load_file(), made by bootstrap, in the

order in which they were loaded. Can be used with dl_find_symbol() to look for a symbol in any

of the loaded files.

@dl_modules

An array of module (package) names that have been bootstrap’ed.

@dl_shared_objects

An array of file names for the shared objects that were loaded.

dl_error()
Syntax:

$message = dl_error();

Error message text from the last failed DynaLoader function. Note that, similar to errno in unix, a

successful function call does not reset this message.

Implementations should detect the error as soon as it occurs in any of the other functions and save

the corresponding message for later retrieval. This will avoid problems on some platforms (such

as SunOS) where the error message is very temporary (e.g., dlerror()).

$dl_debug

Internal debugging messages are enabled when $dl_debug is set true. Currently setting $dl_debug

only affects the Perl side of the DynaLoader. These messages should help an application

developer to resolve any DynaLoader usage problems.

$dl_debug is set to $ENV{’PERL_DL_DEBUG’} if defined.

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

For the DynaLoader developer/porter there is a similar debugging variable added to the C code

(see dlutils.c) and enabled if Perl was built with the -DDEBUGGING flag. This can also be set

via the PERL_DL_DEBUG environment variable. Set to 1 for minimal information or higher for

more.

$dl_dlext

When specified (localised) in a module’s .pm file, indicates the extension which the module’s

loadable object will have. For example:

local $DynaLoader::dl_dlext = ’unusual_ext’;

would indicate that the module’s loadable object has an extension of "unusual_ext" instead of the

more usual $Config{dlext}. NOTE: This also requires that the module’s Makefile.PL specify (in

"WriteMakefile()"):

DLEXT => ’unusual_ext’,

dl_findfile()
Syntax:

@filepaths = dl_findfile(@names)

Determine the full paths (including file suffix) of one or more loadable files given their generic

names and optionally one or more directories. Searches directories in @dl_library_path by default

and returns an empty list if no files were found.

Names can be specified in a variety of platform independent forms. Any names in the form

-lname are converted into libname.*, where .* is an appropriate suffix for the platform.

If a name does not already have a suitable prefix and/or suffix then the corresponding file will be

searched for by trying combinations of prefix and suffix appropriate to the platform: "$name.o",

"lib$name.*" and "$name".

If any directories are included in @names they are searched before @dl_library_path. Directories

may be specified as -Ldir. Any other names are treated as filenames to be searched for.

Using arguments of the form "-Ldir" and "-lname" is recommended.

Example:

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

@dl_resolve_using = dl_findfile(qw(-L/usr/5lib -lposix));

dl_expandspec()
Syntax:

$filepath = dl_expandspec($spec)

Some unusual systems, such as VMS, require special filename handling in order to deal with

symbolic names for files (i.e., VMS’s Logical Names).

To support these systems a dl_expandspec() function can be implemented either in the dl_*.xs file

or code can be added to the dl_expandspec() function in DynaLoader.pm. See

DynaLoader_pm.PL for more information.

dl_load_file()
Syntax:

$libref = dl_load_file($filename, $flags)

Dynamically load $filename, which must be the path to a shared object or library. An opaque

’library reference’ is returned as a handle for the loaded object. Returns undef on error.

The $flags argument to alters dl_load_file behaviour. Assigned bits:

0x01 make symbols available for linking later dl_load_file’s.

(only known to work on Solaris 2 using dlopen(RTLD_GLOBAL))

(ignored under VMS; this is a normal part of image linking)

(On systems that provide a handle for the loaded object such as SunOS and HPUX, $libref will be

that handle. On other systems $libref will typically be $filename or a pointer to a buffer

containing $filename. The application should not examine or alter $libref in any way.)

This is the function that does the real work. It should use the current values of

@dl_require_symbols and @dl_resolve_using if required.

SunOS: dlopen($filename)

HP-UX: shl_load($filename)

Linux: dld_create_reference(@dl_require_symbols); dld_link($filename)

VMS: lib$find_image_symbol($filename,$dl_require_symbols[0])

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

(The dlopen() function is also used by Solaris and some versions of Linux, and is a common

choice when providing a "wrapper" on other mechanisms as is done in the OS/2 port.)

dl_unload_file()
Syntax:

$status = dl_unload_file($libref)

Dynamically unload $libref, which must be an opaque ’library reference’ as returned from

dl_load_file. Returns one on success and zero on failure. This function is optional and may not

necessarily be provided on all platforms.

If it is defined and perl is compiled with the C macro "DL_UNLOAD_ALL_AT_EXIT" defined,

then it is called automatically when the interpreter exits for every shared object or library loaded

by DynaLoader::bootstrap. All such library references are stored in @dl_librefs by

DynaLoader::Bootstrap as it loads the libraries. The files are unloaded in last-in, first-out order.

This unloading is usually necessary when embedding a shared-object perl (e.g. one configured

with -Duseshrplib) within a larger application, and the perl interpreter is created and destroyed

several times within the lifetime of the application. In this case it is possible that the system

dynamic linker will unload and then subsequently reload the shared libperl without relocating any

references to it from any files DynaLoaded by the previous incarnation of the interpreter. As a

result, any shared objects opened by DynaLoader may point to a now invalid ’ghost’ of the libperl

shared object, causing apparently random memory corruption and crashes. This behaviour is most

commonly seen when using Apache and mod_perl built with the APXS mechanism.

SunOS: dlclose($libref)

HP-UX: ???

Linux: ???

VMS: ???

(The dlclose() function is also used by Solaris and some versions of Linux, and is a common

choice when providing a "wrapper" on other mechanisms as is done in the OS/2 port.)

dl_load_flags()
Syntax:

$flags = dl_load_flags $modulename;

Designed to be a method call, and to be overridden by a derived class (i.e. a class which has

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

DynaLoader in its @ISA). The definition in DynaLoader itself returns 0, which produces standard

behavior from dl_load_file().

dl_find_symbol()
Syntax:

$symref = dl_find_symbol($libref, $symbol)

Return the address of the symbol $symbol or "undef" if not found. If the target system has

separate functions to search for symbols of different types then dl_find_symbol() should search

for function symbols first and then other types.

The exact manner in which the address is returned in $symref is not currently defined. The only

initial requirement is that $symref can be passed to, and understood by, dl_install_xsub().

SunOS: dlsym($libref, $symbol)

HP-UX: shl_findsym($libref, $symbol)

Linux: dld_get_func($symbol) and/or dld_get_symbol($symbol)

VMS: lib$find_image_symbol($libref,$symbol)

dl_find_symbol_anywhere()
Syntax:

$symref = dl_find_symbol_anywhere($symbol)

Applies dl_find_symbol() to the members of @dl_librefs and returns the first match found.

dl_undef_symbols()
Example

@symbols = dl_undef_symbols()

Return a list of symbol names which remain undefined after load_file(). Returns "()" if not

known. Don’t worry if your platform does not provide a mechanism for this. Most do not need it

and hence do not provide it, they just return an empty list.

dl_install_xsub()
Syntax:

dl_install_xsub($perl_name, $symref [, $filename])

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

Create a new Perl external subroutine named $perl_name using $symref as a pointer to the

function which implements the routine. This is simply a direct call to newXS()/newXS_flags().
Returns a reference to the installed function.

The $filename parameter is used by Perl to identify the source file for the function if required by

die(), caller() or the debugger. If $filename is not defined then "DynaLoader" will be used.

bootstrap()
Syntax:

bootstrap($module [...])

This is the normal entry point for automatic dynamic loading in Perl.

It performs the following actions:

+o locates an auto/$module directory by searching @INC

+o uses dl_findfile() to determine the filename to load

+o sets @dl_require_symbols to "("boot_$module")"

+o executes an auto/$module/$module.bs file if it exists (typically used to add to

@dl_resolve_using any files which are required to load the module on the current

platform)

+o calls dl_load_flags() to determine how to load the file.

+o calls dl_load_file() to load the file

+o calls dl_undef_symbols() and warns if any symbols are undefined

+o calls dl_find_symbol() for "boot_$module"

+o calls dl_install_xsub() to install it as "${module}::bootstrap"

+o calls &{"${module}::bootstrap"} to bootstrap the module (actually it uses the function

reference returned by dl_install_xsub for speed)

All arguments to bootstrap() are passed to the module’s bootstrap function. The default code

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

generated by xsubpp expects $module [, $version] If the optional $version argument is not given,

it defaults to "$XS_VERSION // $VERSION" in the module’s symbol table. The default code

compares the Perl-space version with the version of the compiled XS code, and croaks with an

error if they do not match.

AUTHOR
Tim Bunce, 11 August 1994.

This interface is based on the work and comments of (in no particular order): Larry Wall, Robert

Sanders, Dean Roehrich, Jeff Okamoto, Anno Siegel, Thomas Neumann, Paul Marquess, Charles

Bailey, myself and others.

Larry Wall designed the elegant inherited bootstrap mechanism and implemented the first Perl 5

dynamic loader using it.

Solaris global loading added by Nick Ing-Simmons with design/coding assistance from Tim Bunce,

January 1996.

DynaLoader(3) Perl Programmers Reference Guide DynaLoader(3)

perl v5.34.3 2023-12-14 DynaLoader(3)

