
NAME
ENGINE_get_DH, ENGINE_get_DSA, ENGINE_by_id, ENGINE_get_cipher_engine,

ENGINE_get_default_DH, ENGINE_get_default_DSA, ENGINE_get_default_RAND,

ENGINE_get_default_RSA, ENGINE_get_digest_engine, ENGINE_get_first, ENGINE_get_last,

ENGINE_get_next, ENGINE_get_prev, ENGINE_new, ENGINE_get_ciphers,

ENGINE_get_ctrl_function, ENGINE_get_digests, ENGINE_get_destroy_function,

ENGINE_get_finish_function, ENGINE_get_init_function, ENGINE_get_load_privkey_function,

ENGINE_get_load_pubkey_function, ENGINE_load_private_key, ENGINE_load_public_key,

ENGINE_get_RAND, ENGINE_get_RSA, ENGINE_get_id, ENGINE_get_name,

ENGINE_get_cmd_defns, ENGINE_get_cipher, ENGINE_get_digest, ENGINE_add,

ENGINE_cmd_is_executable, ENGINE_ctrl, ENGINE_ctrl_cmd, ENGINE_ctrl_cmd_string,

ENGINE_finish, ENGINE_free, ENGINE_get_flags, ENGINE_init, ENGINE_register_DH,

ENGINE_register_DSA, ENGINE_register_RAND, ENGINE_register_RSA,

ENGINE_register_all_complete, ENGINE_register_ciphers, ENGINE_register_complete,

ENGINE_register_digests, ENGINE_remove, ENGINE_set_DH, ENGINE_set_DSA,

ENGINE_set_RAND, ENGINE_set_RSA, ENGINE_set_ciphers, ENGINE_set_cmd_defns,

ENGINE_set_ctrl_function, ENGINE_set_default, ENGINE_set_default_DH,

ENGINE_set_default_DSA, ENGINE_set_default_RAND, ENGINE_set_default_RSA,

ENGINE_set_default_ciphers, ENGINE_set_default_digests, ENGINE_set_default_string,

ENGINE_set_destroy_function, ENGINE_set_digests, ENGINE_set_finish_function,

ENGINE_set_flags, ENGINE_set_id, ENGINE_set_init_function,

ENGINE_set_load_privkey_function, ENGINE_set_load_pubkey_function, ENGINE_set_name,

ENGINE_up_ref, ENGINE_get_table_flags, ENGINE_cleanup, ENGINE_load_builtin_engines,

ENGINE_register_all_DH, ENGINE_register_all_DSA, ENGINE_register_all_RAND,

ENGINE_register_all_RSA, ENGINE_register_all_ciphers, ENGINE_register_all_digests,

ENGINE_set_table_flags, ENGINE_unregister_DH, ENGINE_unregister_DSA,

ENGINE_unregister_RAND, ENGINE_unregister_RSA, ENGINE_unregister_ciphers,

ENGINE_unregister_digests - ENGINE cryptographic module support

SYNOPSIS
#include <openssl/engine.h>

The following functions have been deprecated since OpenSSL 3.0, and can be hidden entirely by

defining OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros(7):

ENGINE *ENGINE_get_first(void);

ENGINE *ENGINE_get_last(void);

ENGINE *ENGINE_get_next(ENGINE *e);

ENGINE *ENGINE_get_prev(ENGINE *e);

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

int ENGINE_add(ENGINE *e);

int ENGINE_remove(ENGINE *e);

ENGINE *ENGINE_by_id(const char *id);

int ENGINE_init(ENGINE *e);

int ENGINE_finish(ENGINE *e);

void ENGINE_load_builtin_engines(void);

ENGINE *ENGINE_get_default_RSA(void);

ENGINE *ENGINE_get_default_DSA(void);

ENGINE *ENGINE_get_default_DH(void);

ENGINE *ENGINE_get_default_RAND(void);

ENGINE *ENGINE_get_cipher_engine(int nid);

ENGINE *ENGINE_get_digest_engine(int nid);

int ENGINE_set_default_RSA(ENGINE *e);

int ENGINE_set_default_DSA(ENGINE *e);

int ENGINE_set_default_DH(ENGINE *e);

int ENGINE_set_default_RAND(ENGINE *e);

int ENGINE_set_default_ciphers(ENGINE *e);

int ENGINE_set_default_digests(ENGINE *e);

int ENGINE_set_default_string(ENGINE *e, const char *list);

int ENGINE_set_default(ENGINE *e, unsigned int flags);

unsigned int ENGINE_get_table_flags(void);

void ENGINE_set_table_flags(unsigned int flags);

int ENGINE_register_RSA(ENGINE *e);

void ENGINE_unregister_RSA(ENGINE *e);

void ENGINE_register_all_RSA(void);

int ENGINE_register_DSA(ENGINE *e);

void ENGINE_unregister_DSA(ENGINE *e);

void ENGINE_register_all_DSA(void);

int ENGINE_register_DH(ENGINE *e);

void ENGINE_unregister_DH(ENGINE *e);

void ENGINE_register_all_DH(void);

int ENGINE_register_RAND(ENGINE *e);

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

void ENGINE_unregister_RAND(ENGINE *e);

void ENGINE_register_all_RAND(void);

int ENGINE_register_ciphers(ENGINE *e);

void ENGINE_unregister_ciphers(ENGINE *e);

void ENGINE_register_all_ciphers(void);

int ENGINE_register_digests(ENGINE *e);

void ENGINE_unregister_digests(ENGINE *e);

void ENGINE_register_all_digests(void);

int ENGINE_register_complete(ENGINE *e);

int ENGINE_register_all_complete(void);

int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));

int ENGINE_cmd_is_executable(ENGINE *e, int cmd);

int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,

long i, void *p, void (*f)(void), int cmd_optional);

int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,

int cmd_optional);

ENGINE *ENGINE_new(void);

int ENGINE_free(ENGINE *e);

int ENGINE_up_ref(ENGINE *e);

int ENGINE_set_id(ENGINE *e, const char *id);

int ENGINE_set_name(ENGINE *e, const char *name);

int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);

int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);

int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);

int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);

int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);

int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);

int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);

int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);

int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);

int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);

int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);

int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);

int ENGINE_set_flags(ENGINE *e, int flags);

int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);

const char *ENGINE_get_id(const ENGINE *e);

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

const char *ENGINE_get_name(const ENGINE *e);

const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);

const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);

const DH_METHOD *ENGINE_get_DH(const ENGINE *e);

const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);

ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);

ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);

ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);

ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);

ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);

ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);

ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);

ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);

const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);

const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);

int ENGINE_get_flags(const ENGINE *e);

const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);

EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,

UI_METHOD *ui_method, void *callback_data);

EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,

UI_METHOD *ui_method, void *callback_data);

The following function has been deprecated since OpenSSL 1.1.0, and can be hidden entirely by

defining OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros(7):

void ENGINE_cleanup(void);

DESCRIPTION
All of the functions described on this page are deprecated. Applications should instead use the

provider APIs.

These functions create, manipulate, and use cryptographic modules in the form of ENGINE objects.

These objects act as containers for implementations of cryptographic algorithms, and support a

reference-counted mechanism to allow them to be dynamically loaded in and out of the running

application.

The cryptographic functionality that can be provided by an ENGINE implementation includes the

following abstractions;

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

RSA_METHOD - for providing alternative RSA implementations

DSA_METHOD, DH_METHOD, RAND_METHOD, ECDH_METHOD, ECDSA_METHOD,

- similarly for other OpenSSL APIs

EVP_CIPHER - potentially multiple cipher algorithms (indexed by ’nid’)

EVP_DIGEST - potentially multiple hash algorithms (indexed by ’nid’)

key-loading - loading public and/or private EVP_PKEY keys

Reference counting and handles
Due to the modular nature of the ENGINE API, pointers to ENGINEs need to be treated as handles -

i.e. not only as pointers, but also as references to the underlying ENGINE object. Ie. one should obtain

a new reference when making copies of an ENGINE pointer if the copies will be used (and released)

independently.

ENGINE objects have two levels of reference-counting to match the way in which the objects are used.

At the most basic level, each ENGINE pointer is inherently a structural reference - a structural

reference is required to use the pointer value at all, as this kind of reference is a guarantee that the

structure can not be deallocated until the reference is released.

However, a structural reference provides no guarantee that the ENGINE is initialised and able to use

any of its cryptographic implementations. Indeed it’s quite possible that most ENGINEs will not

initialise at all in typical environments, as ENGINEs are typically used to support specialised hardware.

To use an ENGINE’s functionality, you need a functional reference. This kind of reference can be

considered a specialised form of structural reference, because each functional reference implicitly

contains a structural reference as well - however to avoid difficult-to-find programming bugs, it is

recommended to treat the two kinds of reference independently. If you have a functional reference to

an ENGINE, you have a guarantee that the ENGINE has been initialised and is ready to perform

cryptographic operations, and will remain initialised until after you have released your reference.

Structural references

This basic type of reference is used for instantiating new ENGINEs, iterating across OpenSSL’s

internal linked-list of loaded ENGINEs, reading information about an ENGINE, etc. Essentially a

structural reference is sufficient if you only need to query or manipulate the data of an ENGINE

implementation rather than use its functionality.

The ENGINE_new() function returns a structural reference to a new (empty) ENGINE object. There

are other ENGINE API functions that return structural references such as; ENGINE_by_id(),
ENGINE_get_first(), ENGINE_get_last(), ENGINE_get_next(), ENGINE_get_prev(). All structural

references should be released by a corresponding to call to the ENGINE_free() function - the ENGINE

object itself will only actually be cleaned up and deallocated when the last structural reference is

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

released.

It should also be noted that many ENGINE API function calls that accept a structural reference will

internally obtain another reference - typically this happens whenever the supplied ENGINE will be

needed by OpenSSL after the function has returned. Eg. the function to add a new ENGINE to

OpenSSL’s internal list is ENGINE_add() - if this function returns success, then OpenSSL will have

stored a new structural reference internally so the caller is still responsible for freeing their own

reference with ENGINE_free() when they are finished with it. In a similar way, some functions will

automatically release the structural reference passed to it if part of the function’s job is to do so. Eg. the

ENGINE_get_next() and ENGINE_get_prev() functions are used for iterating across the internal

ENGINE list - they will return a new structural reference to the next (or previous) ENGINE in the list

or NULL if at the end (or beginning) of the list, but in either case the structural reference passed to the

function is released on behalf of the caller.

To clarify a particular function’s handling of references, one should always consult that function’s

documentation "man" page, or failing that the <openssl/engine.h> header file includes some hints.

Functional references

As mentioned, functional references exist when the cryptographic functionality of an ENGINE is

required to be available. A functional reference can be obtained in one of two ways; from an existing

structural reference to the required ENGINE, or by asking OpenSSL for the default operational

ENGINE for a given cryptographic purpose.

To obtain a functional reference from an existing structural reference, call the ENGINE_init() function.

This returns zero if the ENGINE was not already operational and couldn’t be successfully initialised

(e.g. lack of system drivers, no special hardware attached, etc), otherwise it will return nonzero to

indicate that the ENGINE is now operational and will have allocated a new functional reference to the

ENGINE. All functional references are released by calling ENGINE_finish() (which removes the

implicit structural reference as well).

The second way to get a functional reference is by asking OpenSSL for a default implementation for a

given task, e.g. by ENGINE_get_default_RSA(), ENGINE_get_default_cipher_engine(), etc. These are

discussed in the next section, though they are not usually required by application programmers as they

are used automatically when creating and using the relevant algorithm-specific types in OpenSSL, such

as RSA, DSA, EVP_CIPHER_CTX, etc.

Default implementations
For each supported abstraction, the ENGINE code maintains an internal table of state to control which

implementations are available for a given abstraction and which should be used by default. These

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

implementations are registered in the tables and indexed by an ’nid’ value, because abstractions like

EVP_CIPHER and EVP_DIGEST support many distinct algorithms and modes, and ENGINEs can

support arbitrarily many of them. In the case of other abstractions like RSA, DSA, etc, there is only

one "algorithm" so all implementations implicitly register using the same ’nid’ index.

When a default ENGINE is requested for a given abstraction/algorithm/mode, (e.g. when calling

RSA_new_method(NULL)), a "get_default" call will be made to the ENGINE subsystem to process the

corresponding state table and return a functional reference to an initialised ENGINE whose

implementation should be used. If no ENGINE should (or can) be used, it will return NULL and the

caller will operate with a NULL ENGINE handle - this usually equates to using the conventional

software implementation. In the latter case, OpenSSL will from then on behave the way it used to

before the ENGINE API existed.

Each state table has a flag to note whether it has processed this "get_default" query since the table was

last modified, because to process this question it must iterate across all the registered ENGINEs in the

table trying to initialise each of them in turn, in case one of them is operational. If it returns a

functional reference to an ENGINE, it will also cache another reference to speed up processing future

queries (without needing to iterate across the table). Likewise, it will cache a NULL response if no

ENGINE was available so that future queries won’t repeat the same iteration unless the state table

changes. This behaviour can also be changed; if the ENGINE_TABLE_FLAG_NOINIT flag is set

(using ENGINE_set_table_flags()), no attempted initialisations will take place, instead the only way

for the state table to return a non-NULL ENGINE to the "get_default" query will be if one is expressly

set in the table. Eg. ENGINE_set_default_RSA() does the same job as ENGINE_register_RSA()
except that it also sets the state table’s cached response for the "get_default" query. In the case of

abstractions like EVP_CIPHER, where implementations are indexed by ’nid’, these flags and cached-

responses are distinct for each ’nid’ value.

Application requirements
This section will explain the basic things an application programmer should support to make the most

useful elements of the ENGINE functionality available to the user. The first thing to consider is

whether the programmer wishes to make alternative ENGINE modules available to the application and

user. OpenSSL maintains an internal linked list of "visible" ENGINEs from which it has to operate - at

start-up, this list is empty and in fact if an application does not call any ENGINE API calls and it uses

static linking against openssl, then the resulting application binary will not contain any alternative

ENGINE code at all. So the first consideration is whether any/all available ENGINE implementations

should be made visible to OpenSSL - this is controlled by calling the various "load" functions.

The fact that ENGINEs are made visible to OpenSSL (and thus are linked into the program and loaded

into memory at run-time) does not mean they are "registered" or called into use by OpenSSL

automatically - that behaviour is something for the application to control. Some applications will want

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

to allow the user to specify exactly which ENGINE they want used if any is to be used at all. Others

may prefer to load all support and have OpenSSL automatically use at run-time any ENGINE that is

able to successfully initialise - i.e. to assume that this corresponds to acceleration hardware attached to

the machine or some such thing. There are probably numerous other ways in which applications may

prefer to handle things, so we will simply illustrate the consequences as they apply to a couple of

simple cases and leave developers to consider these and the source code to openssl’s built-in utilities as

guides.

If no ENGINE API functions are called within an application, then OpenSSL will not allocate any

internal resources. Prior to OpenSSL 1.1.0, however, if any ENGINEs are loaded, even if not

registered or used, it was necessary to call ENGINE_cleanup() before the program exits.

Using a specific ENGINE implementation

Here we’ll assume an application has been configured by its user or admin to want to use the "ACME"

ENGINE if it is available in the version of OpenSSL the application was compiled with. If it is

available, it should be used by default for all RSA, DSA, and symmetric cipher operations, otherwise

OpenSSL should use its built-in software as per usual. The following code illustrates how to approach

this;

ENGINE *e;

const char *engine_id = "ACME";

ENGINE_load_builtin_engines();

e = ENGINE_by_id(engine_id);

if (!e)

/* the engine isn’t available */

return;

if (!ENGINE_init(e)) {

/* the engine couldn’t initialise, release ’e’ */

ENGINE_free(e);

return;

}

if (!ENGINE_set_default_RSA(e))

/*

* This should only happen when ’e’ can’t initialise, but the previous

* statement suggests it did.

*/

abort();

ENGINE_set_default_DSA(e);

ENGINE_set_default_ciphers(e);

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

/* Release the functional reference from ENGINE_init() */

ENGINE_finish(e);

/* Release the structural reference from ENGINE_by_id() */

ENGINE_free(e);

Automatically using built-in ENGINE implementations

Here we’ll assume we want to load and register all ENGINE implementations bundled with OpenSSL,

such that for any cryptographic algorithm required by OpenSSL - if there is an ENGINE that

implements it and can be initialised, it should be used. The following code illustrates how this can

work;

/* Load all bundled ENGINEs into memory and make them visible */

ENGINE_load_builtin_engines();

/* Register all of them for every algorithm they collectively implement */

ENGINE_register_all_complete();

That’s all that’s required. Eg. the next time OpenSSL tries to set up an RSA key, any bundled

ENGINEs that implement RSA_METHOD will be passed to ENGINE_init() and if any of those

succeed, that ENGINE will be set as the default for RSA use from then on.

Advanced configuration support
There is a mechanism supported by the ENGINE framework that allows each ENGINE implementation

to define an arbitrary set of configuration "commands" and expose them to OpenSSL and any

applications based on OpenSSL. This mechanism is entirely based on the use of name-value pairs and

assumes ASCII input (no unicode or UTF for now!), so it is ideal if applications want to provide a

transparent way for users to provide arbitrary configuration "directives" directly to such ENGINEs. It is

also possible for the application to dynamically interrogate the loaded ENGINE implementations for

the names, descriptions, and input flags of their available "control commands", providing a more

flexible configuration scheme. However, if the user is expected to know which ENGINE device he/she

is using (in the case of specialised hardware, this goes without saying) then applications may not need

to concern themselves with discovering the supported control commands and simply prefer to pass

settings into ENGINEs exactly as they are provided by the user.

Before illustrating how control commands work, it is worth mentioning what they are typically used

for. Broadly speaking there are two uses for control commands; the first is to provide the necessary

details to the implementation (which may know nothing at all specific to the host system) so that it can

be initialised for use. This could include the path to any driver or config files it needs to load, required

network addresses, smart-card identifiers, passwords to initialise protected devices, logging

information, etc etc. This class of commands typically needs to be passed to an ENGINE before

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

attempting to initialise it, i.e. before calling ENGINE_init(). The other class of commands consist of

settings or operations that tweak certain behaviour or cause certain operations to take place, and these

commands may work either before or after ENGINE_init(), or in some cases both. ENGINE

implementations should provide indications of this in the descriptions attached to built-in control

commands and/or in external product documentation.

Issuing control commands to an ENGINE

Let’s illustrate by example; a function for which the caller supplies the name of the ENGINE it wishes

to use, a table of string-pairs for use before initialisation, and another table for use after initialisation.

Note that the string-pairs used for control commands consist of a command "name" followed by the

command "parameter" - the parameter could be NULL in some cases but the name can not. This

function should initialise the ENGINE (issuing the "pre" commands beforehand and the "post"

commands afterwards) and set it as the default for everything except RAND and then return a boolean

success or failure.

int generic_load_engine_fn(const char *engine_id,

const char **pre_cmds, int pre_num,

const char **post_cmds, int post_num)

{

ENGINE *e = ENGINE_by_id(engine_id);

if (!e) return 0;

while (pre_num--) {

if (!ENGINE_ctrl_cmd_string(e, pre_cmds[0], pre_cmds[1], 0)) {

fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,

pre_cmds[0], pre_cmds[1] ? pre_cmds[1] : "(NULL)");

ENGINE_free(e);

return 0;

}

pre_cmds += 2;

}

if (!ENGINE_init(e)) {

fprintf(stderr, "Failed initialisation\n");

ENGINE_free(e);

return 0;

}

/*

* ENGINE_init() returned a functional reference, so free the structural

* reference from ENGINE_by_id().

*/

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

ENGINE_free(e);

while (post_num--) {

if (!ENGINE_ctrl_cmd_string(e, post_cmds[0], post_cmds[1], 0)) {

fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,

post_cmds[0], post_cmds[1] ? post_cmds[1] : "(NULL)");

ENGINE_finish(e);

return 0;

}

post_cmds += 2;

}

ENGINE_set_default(e, ENGINE_METHOD_ALL & ~ENGINE_METHOD_RAND);

/* Success */

return 1;

}

Note that ENGINE_ctrl_cmd_string() accepts a boolean argument that can relax the semantics of the

function - if set nonzero it will only return failure if the ENGINE supported the given command name

but failed while executing it, if the ENGINE doesn’t support the command name it will simply return

success without doing anything. In this case we assume the user is only supplying commands specific

to the given ENGINE so we set this to FALSE.

Discovering supported control commands

It is possible to discover at run-time the names, numerical-ids, descriptions and input parameters of the

control commands supported by an ENGINE using a structural reference. Note that some control

commands are defined by OpenSSL itself and it will intercept and handle these control commands on

behalf of the ENGINE, i.e. the ENGINE’s ctrl() handler is not used for the control command.

<openssl/engine.h> defines an index, ENGINE_CMD_BASE, that all control commands implemented

by ENGINEs should be numbered from. Any command value lower than this symbol is considered a

"generic" command is handled directly by the OpenSSL core routines.

It is using these "core" control commands that one can discover the control commands implemented by

a given ENGINE, specifically the commands:

ENGINE_HAS_CTRL_FUNCTION

ENGINE_CTRL_GET_FIRST_CMD_TYPE

ENGINE_CTRL_GET_NEXT_CMD_TYPE

ENGINE_CTRL_GET_CMD_FROM_NAME

ENGINE_CTRL_GET_NAME_LEN_FROM_CMD

ENGINE_CTRL_GET_NAME_FROM_CMD

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

ENGINE_CTRL_GET_DESC_LEN_FROM_CMD

ENGINE_CTRL_GET_DESC_FROM_CMD

ENGINE_CTRL_GET_CMD_FLAGS

Whilst these commands are automatically processed by the OpenSSL framework code, they use

various properties exposed by each ENGINE to process these queries. An ENGINE has 3 properties it

exposes that can affect how this behaves; it can supply a ctrl() handler, it can specify

ENGINE_FLAGS_MANUAL_CMD_CTRL in the ENGINE’s flags, and it can expose an array of

control command descriptions. If an ENGINE specifies the

ENGINE_FLAGS_MANUAL_CMD_CTRL flag, then it will simply pass all these "core" control

commands directly to the ENGINE’s ctrl() handler (and thus, it must have supplied one), so it is up to

the ENGINE to reply to these "discovery" commands itself. If that flag is not set, then the OpenSSL

framework code will work with the following rules:

if no ctrl() handler supplied;

ENGINE_HAS_CTRL_FUNCTION returns FALSE (zero),

all other commands fail.

if a ctrl() handler was supplied but no array of control commands;

ENGINE_HAS_CTRL_FUNCTION returns TRUE,

all other commands fail.

if a ctrl() handler and array of control commands was supplied;

ENGINE_HAS_CTRL_FUNCTION returns TRUE,

all other commands proceed processing ...

If the ENGINE’s array of control commands is empty then all other commands will fail, otherwise;

ENGINE_CTRL_GET_FIRST_CMD_TYPE returns the identifier of the first command supported by

the ENGINE, ENGINE_GET_NEXT_CMD_TYPE takes the identifier of a command supported by the

ENGINE and returns the next command identifier or fails if there are no more,

ENGINE_CMD_FROM_NAME takes a string name for a command and returns the corresponding

identifier or fails if no such command name exists, and the remaining commands take a command

identifier and return properties of the corresponding commands. All except

ENGINE_CTRL_GET_FLAGS return the string length of a command name or description, or populate

a supplied character buffer with a copy of the command name or description.

ENGINE_CTRL_GET_FLAGS returns a bitwise-OR’d mask of the following possible values:

ENGINE_CMD_FLAG_NUMERIC

ENGINE_CMD_FLAG_STRING

ENGINE_CMD_FLAG_NO_INPUT

ENGINE_CMD_FLAG_INTERNAL

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

If the ENGINE_CMD_FLAG_INTERNAL flag is set, then any other flags are purely informational to

the caller - this flag will prevent the command being usable for any higher-level ENGINE functions

such as ENGINE_ctrl_cmd_string(). "INTERNAL" commands are not intended to be exposed to text-

based configuration by applications, administrations, users, etc. These can support arbitrary operations

via ENGINE_ctrl(), including passing to and/or from the control commands data of any arbitrary type.

These commands are supported in the discovery mechanisms simply to allow applications to determine

if an ENGINE supports certain specific commands it might want to use (e.g. application "foo" might

query various ENGINEs to see if they implement "FOO_GET_VENDOR_LOGO_GIF" - and

ENGINE could therefore decide whether or not to support this "foo"-specific extension).

ENVIRONMENT
OPENSSL_ENGINES

The path to the engines directory. Ignored in set-user-ID and set-group-ID programs.

RETURN VALUES
ENGINE_get_first(), ENGINE_get_last(), ENGINE_get_next() and ENGINE_get_prev() return a valid

ENGINE structure or NULL if an error occurred.

ENGINE_add() and ENGINE_remove() return 1 on success or 0 on error.

ENGINE_by_id() returns a valid ENGINE structure or NULL if an error occurred.

ENGINE_init() and ENGINE_finish() return 1 on success or 0 on error.

All ENGINE_get_default_TYPE() functions, ENGINE_get_cipher_engine() and

ENGINE_get_digest_engine() return a valid ENGINE structure on success or NULL if an error

occurred.

All ENGINE_set_default_TYPE() functions return 1 on success or 0 on error.

ENGINE_set_default() returns 1 on success or 0 on error.

ENGINE_get_table_flags() returns an unsigned integer value representing the global table flags which

are used to control the registration behaviour of ENGINE implementations.

All ENGINE_register_TYPE() functions return 1 on success or 0 on error.

ENGINE_register_complete() and ENGINE_register_all_complete() always return 1.

ENGINE_ctrl() returns a positive value on success or others on error.

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

ENGINE_cmd_is_executable() returns 1 if cmd is executable or 0 otherwise.

ENGINE_ctrl_cmd() and ENGINE_ctrl_cmd_string() return 1 on success or 0 on error.

ENGINE_new() returns a valid ENGINE structure on success or NULL if an error occurred.

ENGINE_free() always returns 1.

ENGINE_up_ref() returns 1 on success or 0 on error.

ENGINE_set_id() and ENGINE_set_name() return 1 on success or 0 on error.

All other ENGINE_set_* functions return 1 on success or 0 on error.

ENGINE_get_id() and ENGINE_get_name() return a string representing the identifier and the name of

the ENGINE e respectively.

ENGINE_get_RSA(), ENGINE_get_DSA(), ENGINE_get_DH() and ENGINE_get_RAND() return

corresponding method structures for each algorithms.

ENGINE_get_destroy_function(), ENGINE_get_init_function(), ENGINE_get_finish_function(),
ENGINE_get_ctrl_function(), ENGINE_get_load_privkey_function(),
ENGINE_get_load_pubkey_function(), ENGINE_get_ciphers() and ENGINE_get_digests() return

corresponding function pointers of the callbacks.

ENGINE_get_cipher() returns a valid EVP_CIPHER structure on success or NULL if an error

occurred.

ENGINE_get_digest() returns a valid EVP_MD structure on success or NULL if an error occurred.

ENGINE_get_flags() returns an integer representing the ENGINE flags which are used to control

various behaviours of an ENGINE.

ENGINE_get_cmd_defns() returns an ENGINE_CMD_DEFN structure or NULL if it’s not set.

ENGINE_load_private_key() and ENGINE_load_public_key() return a valid EVP_PKEY structure on

success or NULL if an error occurred.

SEE ALSO
OPENSSL_init_crypto(3), RSA_new_method(3), DSA_new(3), DH_new(3), RAND_bytes(3),

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

config(5)

HISTORY
All of these functions were deprecated in OpenSSL 3.0.

ENGINE_cleanup() was deprecated in OpenSSL 1.1.0 by the automatic cleanup done by

OPENSSL_cleanup() and should not be used.

COPYRIGHT
Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

ENGINE_ADD(3ossl) OpenSSL ENGINE_ADD(3ossl)

3.0.11 2023-09-19 ENGINE_ADD(3ossl)

