
NAME
EVP_ENCODE_CTX_new, EVP_ENCODE_CTX_free, EVP_ENCODE_CTX_copy,

EVP_ENCODE_CTX_num, EVP_EncodeInit, EVP_EncodeUpdate, EVP_EncodeFinal,

EVP_EncodeBlock, EVP_DecodeInit, EVP_DecodeUpdate, EVP_DecodeFinal, EVP_DecodeBlock -

EVP base 64 encode/decode routines

SYNOPSIS
#include <openssl/evp.h>

EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void);

void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx);

int EVP_ENCODE_CTX_copy(EVP_ENCODE_CTX *dctx, EVP_ENCODE_CTX *sctx);

int EVP_ENCODE_CTX_num(EVP_ENCODE_CTX *ctx);

void EVP_EncodeInit(EVP_ENCODE_CTX *ctx);

int EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,

const unsigned char *in, int inl);

void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl);

int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int n);

void EVP_DecodeInit(EVP_ENCODE_CTX *ctx);

int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,

const unsigned char *in, int inl);

int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl);

int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n);

DESCRIPTION
The EVP encode routines provide a high-level interface to base 64 encoding and decoding. Base 64

encoding converts binary data into a printable form that uses the characters A-Z, a-z, 0-9, "+" and "/" to

represent the data. For every 3 bytes of binary data provided 4 bytes of base 64 encoded data will be

produced plus some occasional newlines (see below). If the input data length is not a multiple of 3 then

the output data will be padded at the end using the "=" character.

EVP_ENCODE_CTX_new() allocates, initializes and returns a context to be used for the

encode/decode functions.

EVP_ENCODE_CTX_free() cleans up an encode/decode context ctx and frees up the space allocated

to it.

Encoding of binary data is performed in blocks of 48 input bytes (or less for the final block). For each

48 byte input block encoded 64 bytes of base 64 data is output plus an additional newline character (i.e.

EVP_ENCODEINIT(3ossl) OpenSSL EVP_ENCODEINIT(3ossl)

3.0.11 2023-09-19 EVP_ENCODEINIT(3ossl)



65 bytes in total). The final block (which may be less than 48 bytes) will output 4 bytes for every 3

bytes of input. If the data length is not divisible by 3 then a full 4 bytes is still output for the final 1 or 2

bytes of input. Similarly a newline character will also be output.

EVP_EncodeInit() initialises ctx for the start of a new encoding operation.

EVP_EncodeUpdate() encode inl bytes of data found in the buffer pointed to by in. The output is stored

in the buffer out and the number of bytes output is stored in *outl. It is the caller’s responsibility to

ensure that the buffer at out is sufficiently large to accommodate the output data. Only full blocks of

data (48 bytes) will be immediately processed and output by this function. Any remainder is held in the

ctx object and will be processed by a subsequent call to EVP_EncodeUpdate() or EVP_EncodeFinal().
To calculate the required size of the output buffer add together the value of inl with the amount of

unprocessed data held in ctx and divide the result by 48 (ignore any remainder). This gives the number

of blocks of data that will be processed. Ensure the output buffer contains 65 bytes of storage for each

block, plus an additional byte for a NUL terminator. EVP_EncodeUpdate() may be called repeatedly to

process large amounts of input data. In the event of an error EVP_EncodeUpdate() will set *outl to 0

and return 0. On success 1 will be returned.

EVP_EncodeFinal() must be called at the end of an encoding operation. It will process any partial

block of data remaining in the ctx object. The output data will be stored in out and the length of the

data written will be stored in *outl. It is the caller’s responsibility to ensure that out is sufficiently large

to accommodate the output data which will never be more than 65 bytes plus an additional NUL

terminator (i.e. 66 bytes in total).

EVP_ENCODE_CTX_copy() can be used to copy a context sctx to a context dctx. dctx must be

initialized before calling this function.

EVP_ENCODE_CTX_num() will return the number of as yet unprocessed bytes still to be encoded or

decoded that are pending in the ctx object.

EVP_EncodeBlock() encodes a full block of input data in f and of length n and stores it in t. For every

3 bytes of input provided 4 bytes of output data will be produced. If n is not divisible by 3 then the

block is encoded as a final block of data and the output is padded such that it is always divisible by 4.

Additionally a NUL terminator character will be added. For example if 16 bytes of input data is

provided then 24 bytes of encoded data is created plus 1 byte for a NUL terminator (i.e. 25 bytes in

total). The length of the data generated without the NUL terminator is returned from the function.

EVP_DecodeInit() initialises ctx for the start of a new decoding operation.

EVP_DecodeUpdate() decodes inl characters of data found in the buffer pointed to by in. The output is

EVP_ENCODEINIT(3ossl) OpenSSL EVP_ENCODEINIT(3ossl)

3.0.11 2023-09-19 EVP_ENCODEINIT(3ossl)



stored in the buffer out and the number of bytes output is stored in *outl. It is the caller’s responsibility

to ensure that the buffer at out is sufficiently large to accommodate the output data. This function will

attempt to decode as much data as possible in 4 byte chunks. Any whitespace, newline or carriage

return characters are ignored. Any partial chunk of unprocessed data (1, 2 or 3 bytes) that remains at

the end will be held in the ctx object and processed by a subsequent call to EVP_DecodeUpdate(). If

any illegal base 64 characters are encountered or if the base 64 padding character "=" is encountered in

the middle of the data then the function returns -1 to indicate an error. A return value of 0 or 1 indicates

successful processing of the data. A return value of 0 additionally indicates that the last input data

characters processed included the base 64 padding character "=" and therefore no more non-padding

character data is expected to be processed. For every 4 valid base 64 bytes processed (ignoring

whitespace, carriage returns and line feeds), 3 bytes of binary output data will be produced (or less at

the end of the data where the padding character "=" has been used).

EVP_DecodeFinal() must be called at the end of a decoding operation. If there is any unprocessed data

still in ctx then the input data must not have been a multiple of 4 and therefore an error has occurred.

The function will return -1 in this case. Otherwise the function returns 1 on success.

EVP_DecodeBlock() will decode the block of n characters of base 64 data contained in f and store the

result in t. Any leading whitespace will be trimmed as will any trailing whitespace, newlines, carriage

returns or EOF characters. After such trimming the length of the data in f must be divisible by 4. For

every 4 input bytes exactly 3 output bytes will be produced. The output will be padded with 0 bits if

necessary to ensure that the output is always 3 bytes for every 4 input bytes. This function will return

the length of the data decoded or -1 on error.

RETURN VALUES
EVP_ENCODE_CTX_new() returns a pointer to the newly allocated EVP_ENCODE_CTX object or

NULL on error.

EVP_ENCODE_CTX_num() returns the number of bytes pending encoding or decoding in ctx.

EVP_EncodeUpdate() returns 0 on error or 1 on success.

EVP_EncodeBlock() returns the number of bytes encoded excluding the NUL terminator.

EVP_DecodeUpdate() returns -1 on error and 0 or 1 on success. If 0 is returned then no more non-

padding base 64 characters are expected.

EVP_DecodeFinal() returns -1 on error or 1 on success.

EVP_DecodeBlock() returns the length of the data decoded or -1 on error.

EVP_ENCODEINIT(3ossl) OpenSSL EVP_ENCODEINIT(3ossl)

3.0.11 2023-09-19 EVP_ENCODEINIT(3ossl)



SEE ALSO
evp(7)

COPYRIGHT
Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

EVP_ENCODEINIT(3ossl) OpenSSL EVP_ENCODEINIT(3ossl)

3.0.11 2023-09-19 EVP_ENCODEINIT(3ossl)


