
NAME
FileCheck - Flexible pattern matching file verifier

SYNOPSIS
FileCheck match-filename [--check-prefix=XXX] [--strict-whitespace]

DESCRIPTION
FileCheck reads two files (one from standard input, and one specified on the command line) and uses

one to verify the other. This behavior is particularly useful for the testsuite, which wants to verify that

the output of some tool (e.g. llc) contains the expected information (for example, a movsd from esp or

whatever is interesting). This is similar to using grep, but it is optimized for matching multiple

different inputs in one file in a specific order.

The match-filename file specifies the file that contains the patterns to match. The file to verify is read

from standard input unless the --input-file option is used.

OPTIONS
Options are parsed from the environment variable FILECHECK_OPTS and from the command line.

-help
Print a summary of command line options.

--check-prefix prefix
FileCheck searches the contents of match-filename for patterns to match. By default, these

patterns are prefixed with "CHECK:". If you’d like to use a different prefix (e.g. because the same

input file is checking multiple different tool or options), the --check-prefix argument allows you to

specify (without the trailing ":") one or more prefixes to match. Multiple prefixes are useful for

tests which might change for different run options, but most lines remain the same.

FileCheck does not permit duplicate prefixes, even if one is a check prefix and one is a comment

prefix (see --comment-prefixes below).

--check-prefixes prefix1,prefix2,...
An alias of --check-prefix that allows multiple prefixes to be specified as a comma separated list.

--comment-prefixes prefix1,prefix2,...
By default, FileCheck ignores any occurrence in match-filename of any check prefix if it is

preceded on the same line by "COM:" or "RUN:". See the section The "COM:" directive for usage

details.

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

These default comment prefixes can be overridden by --comment-prefixes if they are not

appropriate for your testing environment. However, doing so is not recommended in LLVM’s

LIT-based test suites, which should be easier to maintain if they all follow a consistent comment

style. In that case, consider proposing a change to the default comment prefixes instead.

--allow-unused-prefixes
This option controls the behavior when using more than one prefix as specified by --check-prefix

or --check-prefixes, and some of these prefixes are missing in the test file. If true, this is allowed, if

false, FileCheck will report an error, listing the missing prefixes. The default value is false.

--input-file filename
File to check (defaults to stdin).

--match-full-lines
By default, FileCheck allows matches of anywhere on a line. This option will require all positive

matches to cover an entire line. Leading and trailing whitespace is ignored, unless

--strict-whitespace is also specified. (Note: negative matches from CHECK-NOT are not affected

by this option!)

Passing this option is equivalent to inserting {{^ *}} or {{^}} before, and {{ *$}} or {{$}} after

every positive check pattern.

--strict-whitespace
By default, FileCheck canonicalizes input horizontal whitespace (spaces and tabs) which causes it

to ignore these differences (a space will match a tab). The --strict-whitespace argument disables

this behavior. End-of-line sequences are canonicalized to UNIX-style \n in all modes.

--ignore-case
By default, FileCheck uses case-sensitive matching. This option causes FileCheck to use

case-insensitive matching.

--implicit-check-not check-pattern
Adds implicit negative checks for the specified patterns between positive checks. The option

allows writing stricter tests without stuffing them with CHECK-NOTs.

For example, "--implicit-check-not warning:" can be useful when testing diagnostic messages from

tools that don’t have an option similar to clang -verify. With this option FileCheck will verify that

input does not contain warnings not covered by any CHECK: patterns.

--dump-input <value>

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

Dump input to stderr, adding annotations representing currently enabled diagnostics. When there

are multiple occurrences of this option, the <value> that appears earliest in the list below has

precedence. The default is fail.

+o help - Explain input dump and quit

+o always - Always dump input

+o fail - Dump input on failure

+o never - Never dump input

--dump-input-context <N>
In the dump requested by --dump-input, print <N> input lines before and <N> input lines after any

lines specified by --dump-input-filter. When there are multiple occurrences of this option, the

largest specified <N> has precedence. The default is 5.

--dump-input-filter <value>
In the dump requested by --dump-input, print only input lines of kind <value> plus any context

specified by --dump-input-context. When there are multiple occurrences of this option, the

<value> that appears earliest in the list below has precedence. The default is error when

--dump-input=fail, and it’s all when --dump-input=always.

+o all - All input lines

+o annotation-full - Input lines with annotations

+o annotation - Input lines with starting points of annotations

+o error - Input lines with starting points of error annotations

--enable-var-scope
Enables scope for regex variables.

Variables with names that start with $ are considered global and remain set throughout the file.

All other variables get undefined after each encountered CHECK-LABEL.

-D<VAR=VALUE>
Sets a filecheck pattern variable VAR with value VALUE that can be used in CHECK: lines.

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

-D#<FMT>,<NUMVAR>=<NUMERIC EXPRESSION>
Sets a filecheck numeric variable NUMVAR of matching format FMT to the result of evaluating

<NUMERIC EXPRESSION> that can be used in CHECK: lines. See section FileCheck Numeric
Variables and Expressions for details on supported numeric expressions.

-version
Show the version number of this program.

-v Print good directive pattern matches. However, if -dump-input=fail or -dump-input=always, add

those matches as input annotations instead.

-vv Print information helpful in diagnosing internal FileCheck issues, such as discarded overlapping

CHECK-DAG: matches, implicit EOF pattern matches, and CHECK-NOT: patterns that do not

have matches. Implies -v. However, if -dump-input=fail or -dump-input=always, just add that

information as input annotations instead.

--allow-deprecated-dag-overlap
Enable overlapping among matches in a group of consecutive CHECK-DAG: directives. This

option is deprecated and is only provided for convenience as old tests are migrated to the new

non-overlapping CHECK-DAG: implementation.

--allow-empty
Allow checking empty input. By default, empty input is rejected.

--color
Use colors in output (autodetected by default).

EXIT STATUS
If FileCheck verifies that the file matches the expected contents, it exits with 0. Otherwise, if not, or if

an error occurs, it will exit with a non-zero value.

TUTORIAL
FileCheck is typically used from LLVM regression tests, being invoked on the RUN line of the test. A

simple example of using FileCheck from a RUN line looks like this:

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

This syntax says to pipe the current file ("%s") into llvm-as, pipe that into llc, then pipe the

output of llc into FileCheck. This means that FileCheck will be verifying its standard input (the

llc output) against the filename argument specified (the original .ll file specified by "%s"). To

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

see how this works, let’s look at the rest of the .ll file (after the RUN line):

define void @sub1(i32* %p, i32 %v) {

entry:

; CHECK: sub1:

; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)

ret void

}

define void @inc4(i64* %p) {

entry:

; CHECK: inc4:

; CHECK: incq

%0 = tail call i64 @llvm.atomic.load.add.i64.p0i64(i64* %p, i64 1)

ret void

}

Here you can see some "CHECK:" lines specified in comments. Now you can see how the file

is piped into llvm-as, then llc, and the machine code output is what we are verifying. FileCheck

checks the machine code output to verify that it matches what the "CHECK:" lines specify.

The syntax of the "CHECK:" lines is very simple: they are fixed strings that must occur in order.

FileCheck defaults to ignoring horizontal whitespace differences (e.g. a space is allowed to

match a tab) but otherwise, the contents of the "CHECK:" line is required to match some thing

in the test file exactly.

One nice thing about FileCheck (compared to grep) is that it allows merging test cases together

into logical groups. For example, because the test above is checking for the "sub1:" and "inc4:"
labels, it will not match unless there is a "subl" in between those labels. If it existed somewhere

else in the file, that would not count: "grep subl" matches if "subl" exists anywhere in the file.

The FileCheck -check-prefix option
The FileCheck -check-prefix option allows multiple test configurations to be driven from one .ll file.

This is useful in many circumstances, for example, testing different architectural variants with llc.

Here’s a simple example:

; RUN: llvm-as < %s | llc -mtriple=i686-apple-darwin9 -mattr=sse41 \

; RUN: | FileCheck %s -check-prefix=X32

; RUN: llvm-as < %s | llc -mtriple=x86_64-apple-darwin9 -mattr=sse41 \

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

; RUN: | FileCheck %s -check-prefix=X64

define <4 x i32> @pinsrd_1(i32 %s, <4 x i32> %tmp) nounwind {

%tmp1 = insertelement <4 x i32>; %tmp, i32 %s, i32 1

ret <4 x i32> %tmp1

; X32: pinsrd_1:

; X32: pinsrd $1, 4(%esp), %xmm0

; X64: pinsrd_1:

; X64: pinsrd $1, %edi, %xmm0

}

In this case, we’re testing that we get the expected code generation with both 32-bit and 64-bit

code generation.

The "COM:" directive
Sometimes you want to disable a FileCheck directive without removing it entirely, or you want to write

comments that mention a directive by name. The "COM:" directive makes it easy to do this. For

example, you might have:

; X32: pinsrd_1:

; X32: pinsrd $1, 4(%esp), %xmm0

; COM: FIXME: X64 isn’t working correctly yet for this part of codegen, but

; COM: X64 will have something similar to X32:

; COM:

; COM: X64: pinsrd_1:

; COM: X64: pinsrd $1, %edi, %xmm0

Without "COM:", you would need to use some combination of rewording and directive syntax

mangling to prevent FileCheck from recognizing the commented occurrences of "X32:" and

"X64:" above as directives. Moreover, FileCheck diagnostics have been proposed that might

complain about the above occurrences of "X64" that don’t have the trailing ":" because they

look like directive typos. Dodging all these problems can be tedious for a test author, and

directive syntax mangling can make the purpose of test code unclear. "COM:" avoids all these

problems.

A few important usage notes:

+o "COM:" within another directive’s pattern does not comment out the remainder of the pattern. For

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

example:

; X32: pinsrd $1, 4(%esp), %xmm0 COM: This is part of the X32 pattern!

If you need to temporarily comment out part of a directive’s pattern, move it to another line.

The reason is that FileCheck parses "COM:" in the same manner as any other directive: only

the first directive on the line is recognized as a directive.

+o For the sake of LIT, FileCheck treats "RUN:" just like "COM:". If this is not suitable for your test

environment, see --comment-prefixes.

+o FileCheck does not recognize "COM", "RUN", or any user-defined comment prefix as a comment

directive if it’s combined with one of the usual check directive suffixes, such as "-NEXT:" or

"-NOT:", discussed below. FileCheck treats such a combination as plain text instead. If it needs to

act as a comment directive for your test environment, define it as such with --comment-prefixes.

The "CHECK-NEXT:" directive
Sometimes you want to match lines and would like to verify that matches happen on exactly

consecutive lines with no other lines in between them. In this case, you can use "CHECK:" and

"CHECK-NEXT:" directives to specify this. If you specified a custom check prefix, just use

"<PREFIX>-NEXT:". For example, something like this works as you’d expect:

define void @t2(<2 x double>* %r, <2 x double>* %A, double %B) {

%tmp3 = load <2 x double>* %A, align 16

%tmp7 = insertelement <2 x double> undef, double %B, i32 0

%tmp9 = shufflevector <2 x double> %tmp3,

<2 x double> %tmp7,

<2 x i32> < i32 0, i32 2 >

store <2 x double> %tmp9, <2 x double>* %r, align 16

ret void

; CHECK: t2:

; CHECK: movl 8(%esp), %eax

; CHECK-NEXT: movapd (%eax), %xmm0

; CHECK-NEXT: movhpd 12(%esp), %xmm0

; CHECK-NEXT: movl 4(%esp), %eax

; CHECK-NEXT: movapd %xmm0, (%eax)

; CHECK-NEXT: ret

}

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

"CHECK-NEXT:" directives reject the input unless there is exactly one newline between it and

the previous directive. A "CHECK-NEXT:" cannot be the first directive in a file.

The "CHECK-SAME:" directive
Sometimes you want to match lines and would like to verify that matches happen on the same line as

the previous match. In this case, you can use "CHECK:" and "CHECK-SAME:" directives to specify

this. If you specified a custom check prefix, just use "<PREFIX>-SAME:".

"CHECK-SAME:" is particularly powerful in conjunction with "CHECK-NOT:" (described below).

For example, the following works like you’d expect:

!0 = !DILocation(line: 5, scope: !1, inlinedAt: !2)

; CHECK: !DILocation(line: 5,

; CHECK-NOT: column:

; CHECK-SAME: scope: ![[SCOPE:[0-9]+]]

"CHECK-SAME:" directives reject the input if there are any newlines between it and the

previous directive.

"CHECK-SAME:" is also useful to avoid writing matchers for irrelevant fields. For example,

suppose you’re writing a test which parses a tool that generates output like this:

Name: foo

Field1: ...

Field2: ...

Field3: ...

Value: 1

Name: bar

Field1: ...

Field2: ...

Field3: ...

Value: 2

Name: baz

Field1: ...

Field2: ...

Field3: ...

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

Value: 1

To write a test that verifies foo has the value 1, you might first write this:

CHECK: Name: foo

CHECK: Value: 1{{$}}

However, this would be a bad test: if the value for foo changes, the test would still pass because

the "CHECK: Value: 1" line would match the value from baz. To fix this, you could add

CHECK-NEXT matchers for every FieldN: line, but that would be verbose, and need to be

updated when Field4 is added. A more succinct way to write the test using the

"CHECK-SAME:" matcher would be as follows:

CHECK: Name: foo

CHECK: Value:

CHECK-SAME: {{ 1$}}

This verifies that the next time "Value:" appears in the output, it has the value 1.

Note: a "CHECK-SAME:" cannot be the first directive in a file.

The "CHECK-EMPTY:" directive
If you need to check that the next line has nothing on it, not even whitespace, you can use the

"CHECK-EMPTY:" directive.

declare void @foo()

declare void @bar()

; CHECK: foo

; CHECK-EMPTY:

; CHECK-NEXT: bar

Just like "CHECK-NEXT:" the directive will fail if there is more than one newline before it

finds the next blank line, and it cannot be the first directive in a file.

The "CHECK-NOT:" directive
The "CHECK-NOT:" directive is used to verify that a string doesn’t occur between two matches (or

before the first match, or after the last match). For example, to verify that a load is removed by a

transformation, a test like this can be used:

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

define i8 @coerce_offset0(i32 %V, i32* %P) {

store i32 %V, i32* %P

%P2 = bitcast i32* %P to i8*

%P3 = getelementptr i8* %P2, i32 2

%A = load i8* %P3

ret i8 %A

; CHECK: @coerce_offset0

; CHECK-NOT: load

; CHECK: ret i8

}

The "CHECK-COUNT:" directive
If you need to match multiple lines with the same pattern over and over again you can repeat a plain

CHECK: as many times as needed. If that looks too boring you can instead use a counted check

"CHECK-COUNT-<num>:", where <num> is a positive decimal number. It will match the pattern

exactly <num> times, no more and no less. If you specified a custom check prefix, just use

"<PREFIX>-COUNT-<num>:" for the same effect. Here is a simple example:

Loop at depth 1

Loop at depth 1

Loop at depth 1

Loop at depth 1

Loop at depth 2

Loop at depth 3

; CHECK-COUNT-6: Loop at depth {{[0-9]+}}

; CHECK-NOT: Loop at depth {{[0-9]+}}

The "CHECK-DAG:" directive
If it’s necessary to match strings that don’t occur in a strictly sequential order, "CHECK-DAG:" could

be used to verify them between two matches (or before the first match, or after the last match). For

example, clang emits vtable globals in reverse order. Using CHECK-DAG:, we can keep the checks in

the natural order:

// RUN: %clang_cc1 %s -emit-llvm -o - | FileCheck %s

struct Foo { virtual void method(); };

Foo f; // emit vtable

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

// CHECK-DAG: @_ZTV3Foo =

struct Bar { virtual void method(); };

Bar b;

// CHECK-DAG: @_ZTV3Bar =

CHECK-NOT: directives could be mixed with CHECK-DAG: directives to exclude strings

between the surrounding CHECK-DAG: directives. As a result, the surrounding CHECK-DAG:
directives cannot be reordered, i.e. all occurrences matching CHECK-DAG: before

CHECK-NOT: must not fall behind occurrences matching CHECK-DAG: after CHECK-NOT:.
For example,

; CHECK-DAG: BEFORE

; CHECK-NOT: NOT

; CHECK-DAG: AFTER

This case will reject input strings where BEFORE occurs after AFTER.

With captured variables, CHECK-DAG: is able to match valid topological orderings of a DAG

with edges from the definition of a variable to its use. It’s useful, e.g., when your test cases

need to match different output sequences from the instruction scheduler. For example,

; CHECK-DAG: add [[REG1:r[0-9]+]], r1, r2

; CHECK-DAG: add [[REG2:r[0-9]+]], r3, r4

; CHECK: mul r5, [[REG1]], [[REG2]]

In this case, any order of that two add instructions will be allowed.

If you are defining and using variables in the same CHECK-DAG: block, be aware that the

definition rule can match after its use.

So, for instance, the code below will pass:

; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]

; CHECK-DAG: vmov.32 [[REG2]][1]

vmov.32 d0[1]

vmov.32 d0[0]

While this other code, will not:

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]

; CHECK-DAG: vmov.32 [[REG2]][1]

vmov.32 d1[1]

vmov.32 d0[0]

While this can be very useful, it’s also dangerous, because in the case of register sequence, you

must have a strong order (read before write, copy before use, etc). If the definition your test is

looking for doesn’t match (because of a bug in the compiler), it may match further away from

the use, and mask real bugs away.

In those cases, to enforce the order, use a non-DAG directive between DAG-blocks.

A CHECK-DAG: directive skips matches that overlap the matches of any preceding

CHECK-DAG: directives in the same CHECK-DAG: block. Not only is this non-overlapping

behavior consistent with other directives, but it’s also necessary to handle sets of non-unique

strings or patterns. For example, the following directives look for unordered log entries for two

tasks in a parallel program, such as the OpenMP runtime:

// CHECK-DAG: [[THREAD_ID:[0-9]+]]: task_begin

// CHECK-DAG: [[THREAD_ID]]: task_end

//

// CHECK-DAG: [[THREAD_ID:[0-9]+]]: task_begin

// CHECK-DAG: [[THREAD_ID]]: task_end

The second pair of directives is guaranteed not to match the same log entries as the first pair

even though the patterns are identical and even if the text of the log entries is identical because

the thread ID manages to be reused.

The "CHECK-LABEL:" directive
Sometimes in a file containing multiple tests divided into logical blocks, one or more CHECK:
directives may inadvertently succeed by matching lines in a later block. While an error will usually

eventually be generated, the check flagged as causing the error may not actually bear any relationship

to the actual source of the problem.

In order to produce better error messages in these cases, the "CHECK-LABEL:" directive can be used.

It is treated identically to a normal CHECK directive except that FileCheck makes an additional

assumption that a line matched by the directive cannot also be matched by any other check present in

match-filename; this is intended to be used for lines containing labels or other unique identifiers.

Conceptually, the presence of CHECK-LABEL divides the input stream into separate blocks, each of

which is processed independently, preventing a CHECK: directive in one block matching a line in

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

another block. If --enable-var-scope is in effect, all local variables are cleared at the beginning of the

block.

For example,

define %struct.C* @C_ctor_base(%struct.C* %this, i32 %x) {

entry:

; CHECK-LABEL: C_ctor_base:

; CHECK: mov [[SAVETHIS:r[0-9]+]], r0

; CHECK: bl A_ctor_base

; CHECK: mov r0, [[SAVETHIS]]

%0 = bitcast %struct.C* %this to %struct.A*

%call = tail call %struct.A* @A_ctor_base(%struct.A* %0)

%1 = bitcast %struct.C* %this to %struct.B*

%call2 = tail call %struct.B* @B_ctor_base(%struct.B* %1, i32 %x)

ret %struct.C* %this

}

define %struct.D* @D_ctor_base(%struct.D* %this, i32 %x) {

entry:

; CHECK-LABEL: D_ctor_base:

The use of CHECK-LABEL: directives in this case ensures that the three CHECK: directives

only accept lines corresponding to the body of the @C_ctor_base function, even if the patterns

match lines found later in the file. Furthermore, if one of these three CHECK: directives fail,

FileCheck will recover by continuing to the next block, allowing multiple test failures to be

detected in a single invocation.

There is no requirement that CHECK-LABEL: directives contain strings that correspond to

actual syntactic labels in a source or output language: they must simply uniquely match a single

line in the file being verified.

CHECK-LABEL: directives cannot contain variable definitions or uses.

Directive modifiers
A directive modifier can be append to a directive by following the directive with {<modifier>} where

the only supported value for <modifier> is LITERAL.

The LITERAL directive modifier can be used to perform a literal match. The modifier results in the

directive not recognizing any syntax to perform regex matching, variable capture or any substitutions.

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

This is useful when the text to match would require excessive escaping otherwise. For example, the

following will perform literal matches rather than considering these as regular expressions:

Input: [[[10, 20]], [[30, 40]]]

Output %r10: [[10, 20]]

Output %r10: [[30, 40]]

; CHECK{LITERAL}: [[[10, 20]], [[30, 40]]]

; CHECK-DAG{LITERAL}: [[30, 40]]

; CHECK-DAG{LITERAL}: [[10, 20]]

FileCheck Regex Matching Syntax
All FileCheck directives take a pattern to match. For most uses of FileCheck, fixed string matching is

perfectly sufficient. For some things, a more flexible form of matching is desired. To support this,

FileCheck allows you to specify regular expressions in matching strings, surrounded by double braces:

{{yourregex}}. FileCheck implements a POSIX regular expression matcher; it supports Extended

POSIX regular expressions (ERE). Because we want to use fixed string matching for a majority of

what we do, FileCheck has been designed to support mixing and matching fixed string matching with

regular expressions. This allows you to write things like this:

; CHECK: movhpd {{[0-9]+}}(%esp), {{%xmm[0-7]}}

In this case, any offset from the ESP register will be allowed, and any xmm register will be

allowed.

Because regular expressions are enclosed with double braces, they are visually distinct, and you

don’t need to use escape characters within the double braces like you would in C. In the rare

case that you want to match double braces explicitly from the input, you can use something ugly

like {{[}][}]}} as your pattern. Or if you are using the repetition count syntax, for example

[[:xdigit:]]{8} to match exactly 8 hex digits, you would need to add parentheses like this

{{([[:xdigit:]]{8})}} to avoid confusion with FileCheck’s closing double-brace.

FileCheck String Substitution Blocks
It is often useful to match a pattern and then verify that it occurs again later in the file. For codegen

tests, this can be useful to allow any register, but verify that that register is used consistently later. To

do this, FileCheck supports string substitution blocks that allow string variables to be defined and

substituted into patterns. Here is a simple example:

; CHECK: test5:

; CHECK: notw [[REGISTER:%[a-z]+]]

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

; CHECK: andw {{.*}}[[REGISTER]]

The first check line matches a regex %[a-z]+ and captures it into the string variable REGISTER.

The second line verifies that whatever is in REGISTER occurs later in the file after an "andw".

FileCheck string substitution blocks are always contained in [[]] pairs, and string variable

names can be formed with the regex [a-zA-Z_][a-zA-Z0-9_]*. If a colon follows the name, then

it is a definition of the variable; otherwise, it is a substitution.

FileCheck variables can be defined multiple times, and substitutions always get the latest value.

Variables can also be substituted later on the same line they were defined on. For example:

; CHECK: op [[REG:r[0-9]+]], [[REG]]

Can be useful if you want the operands of op to be the same register, and don’t care exactly

which register it is.

If --enable-var-scope is in effect, variables with names that start with $ are considered to be

global. All others variables are local. All local variables get undefined at the beginning of each

CHECK-LABEL block. Global variables are not affected by CHECK-LABEL. This makes it

easier to ensure that individual tests are not affected by variables set in preceding tests.

FileCheck Numeric Substitution Blocks
FileCheck also supports numeric substitution blocks that allow defining numeric variables and

checking for numeric values that satisfy a numeric expression constraint based on those variables via a

numeric substitution. This allows CHECK: directives to verify a numeric relation between two

numbers, such as the need for consecutive registers to be used.

The syntax to capture a numeric value is [[#%<fmtspec>,<NUMVAR>:]] where:

+o %<fmtspec>, is an optional format specifier to indicate what number format to match and the

minimum number of digits to expect.

+o <NUMVAR>: is an optional definition of variable <NUMVAR> from the captured value.

The syntax of <fmtspec> is: #.<precision><conversion specifier> where:

+o # is an optional flag available for hex values (see <conversion specifier> below) which requires the

value matched to be prefixed by 0x.

+o .<precision> is an optional printf-style precision specifier in which <precision> indicates the

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

minimum number of digits that the value matched must have, expecting leading zeros if needed.

+o <conversion specifier> is an optional scanf-style conversion specifier to indicate what number

format to match (e.g. hex number). Currently accepted format specifiers are %u, %d, %x and %X.

If absent, the format specifier defaults to %u.

For example:

; CHECK: mov r[[#REG:]], 0x[[#%.8X,ADDR:]]

would match mov r5, 0x0000FEFE and set REG to the value 5 and ADDR to the value 0xFEFE.

Note that due to the precision it would fail to match mov r5, 0xFEFE.

As a result of the numeric variable definition being optional, it is possible to only check that a

numeric value is present in a given format. This can be useful when the value itself is not useful,

for instance:

; CHECK-NOT: mov r0, r[[#]]

to check that a value is synthesized rather than moved around.

The syntax of a numeric substitution is [[#%<fmtspec>, <constraint> <expr>]] where:

+o <fmtspec> is the same format specifier as for defining a variable but in this context indicating how a

numeric expression value should be matched against. If absent, both components of the format

specifier are inferred from the matching format of the numeric variable(s) used by the expression

constraint if any, and defaults to %u if no numeric variable is used, denoting that the value should be

unsigned with no leading zeros. In case of conflict between format specifiers of several numeric

variables, the conversion specifier becomes mandatory but the precision specifier remains optional.

+o <constraint> is the constraint describing how the value to match must relate to the value of the

numeric expression. The only currently accepted constraint is == for an exact match and is the

default if <constraint> is not provided. No matching constraint must be specified when the <expr> is

empty.

+o <expr> is an expression. An expression is in turn recursively defined as:

+o a numeric operand, or

+o an expression followed by an operator and a numeric operand.

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

A numeric operand is a previously defined numeric variable, an integer literal, or a function.

Spaces are accepted before, after and between any of these elements. Numeric operands have

64-bit precision. Overflow and underflow are rejected. There is no support for operator

precedence, but parentheses can be used to change the evaluation order.

The supported operators are:

+o + - Returns the sum of its two operands.

+o - - Returns the difference of its two operands.

The syntax of a function call is <name>(<arguments>) where:

+o name is a predefined string literal. Accepted values are:

+o add - Returns the sum of its two operands.

+o div - Returns the quotient of its two operands.

+o max - Returns the largest of its two operands.

+o min - Returns the smallest of its two operands.

+o mul - Returns the product of its two operands.

+o sub - Returns the difference of its two operands.

+o <arguments> is a comma separated list of expressions.

For example:

; CHECK: load r[[#REG:]], [r0]

; CHECK: load r[[#REG+1]], [r1]

; CHECK: Loading from 0x[[#%x,ADDR:]]

; CHECK-SAME: to 0x[[#ADDR + 7]]

The above example would match the text:

load r5, [r0]

load r6, [r1]

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

Loading from 0xa0463440 to 0xa0463447

but would not match the text:

load r5, [r0]

load r7, [r1]

Loading from 0xa0463440 to 0xa0463443

Due to 7 being unequal to 5 + 1 and a0463443 being unequal to a0463440 + 7.

A numeric variable can also be defined to the result of a numeric expression, in which case the

numeric expression constraint is checked and if verified the variable is assigned to the value.

The unified syntax for both checking a numeric expression and capturing its value into a

numeric variable is thus [[#%<fmtspec>,<NUMVAR>: <constraint> <expr>]] with each

element as described previously. One can use this syntax to make a testcase more

self-describing by using variables instead of values:

; CHECK: mov r[[#REG_OFFSET:]], 0x[[#%X,FIELD_OFFSET:12]]

; CHECK-NEXT: load r[[#]], [r[[#REG_BASE:]], r[[#REG_OFFSET]]]

which would match:

mov r4, 0xC

load r6, [r5, r4]

The --enable-var-scope option has the same effect on numeric variables as on string variables.

Important note: In its current implementation, an expression cannot use a numeric variable

defined earlier in the same CHECK directive.

FileCheck Pseudo Numeric Variables
Sometimes there’s a need to verify output that contains line numbers of the match file, e.g. when

testing compiler diagnostics. This introduces a certain fragility of the match file structure, as

"CHECK:" lines contain absolute line numbers in the same file, which have to be updated whenever

line numbers change due to text addition or deletion.

To support this case, FileCheck expressions understand the @LINE pseudo numeric variable which

evaluates to the line number of the CHECK pattern where it is found.

This way match patterns can be put near the relevant test lines and include relative line number

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

references, for example:

// CHECK: test.cpp:[[# @LINE + 4]]:6: error: expected ’;’ after top level declarator

// CHECK-NEXT: {{^int a}}

// CHECK-NEXT: {{^ \^}}

// CHECK-NEXT: {{^ ;}}

int a

To support legacy uses of @LINE as a special string variable, FileCheck also accepts the

following uses of @LINE with string substitution block syntax: [[@LINE]],
[[@LINE+<offset>]] and [[@LINE-<offset>]] without any spaces inside the brackets and where

offset is an integer.

Matching Newline Characters
To match newline characters in regular expressions the character class [[:space:]] can be used. For

example, the following pattern:

// CHECK: DW_AT_location [DW_FORM_sec_offset] ([[DLOC:0x[0-9a-f]+]]){{[[:space:]].*}}"intd"

matches output of the form (from llvm-dwarfdump):

DW_AT_location [DW_FORM_sec_offset] (0x00000233)

DW_AT_name [DW_FORM_strp] (.debug_str[0x000000c9] = "intd")

letting us set the FileCheck variable DLOC to the desired value 0x00000233, extracted from the

line immediately preceding "intd".

AUTHOR
Maintained by the LLVM Team (https://llvm.org/).

COPYRIGHT
2003-2023, LLVM Project

FILECHECK(1) LLVM FILECHECK(1)

15 2023-12-15 FILECHECK(1)

