
NAME
NgMkSockNode, NgNameNode, NgSendMsg, NgSendAsciiMsg, NgSendReplyMsg, NgRecvMsg,

NgAllocRecvMsg, NgRecvAsciiMsg, NgAllocRecvAsciiMsg, NgSendData, NgRecvData,

NgAllocRecvData, NgSetDebug, NgSetErrLog - netgraph user library

LIBRARY
Netgraph User Library (libnetgraph, -lnetgraph)

SYNOPSIS
#include <netgraph.h>

int

NgMkSockNode(const char *name, int *csp, int *dsp);

int

NgNameNode(int cs, const char *path, const char *fmt, ...);

int

NgSendMsg(int cs, const char *path, int cookie, int cmd, const void *arg, size_t arglen);

int

NgSendAsciiMsg(int cs, const char *path, const char *fmt, ...);

int

NgSendReplyMsg(int cs, const char *path, struct ng_mesg *msg, const void *arg, size_t arglen);

int

NgRecvMsg(int cs, struct ng_mesg *rep, size_t replen, char *path);

int

NgAllocRecvMsg(int cs, struct ng_mesg **rep, char *path);

int

NgRecvAsciiMsg(int cs, struct ng_mesg *rep, size_t replen, char *path);

int

NgAllocRecvAsciiMsg(int cs, struct ng_mesg **rep, char *path);

int

NgSendData(int ds, const char *hook, const u_char *buf, size_t len);

NETGRAPH(3) FreeBSD Library Functions Manual NETGRAPH(3)

FreeBSD 14.0-RELEASE-p6 May 15, 2020 FreeBSD 14.0-RELEASE-p6

int

NgRecvData(int ds, u_char *buf, size_t len, char *hook);

int

NgAllocRecvData(int ds, u_char **buf, char *hook);

int

NgSetDebug(int level);

void

NgSetErrLog(void (*log)(const char *fmt, ...), void (*logx)(const char *fmt, ...));

DESCRIPTION
These functions facilitate user-mode program participation in the kernel netgraph(4) graph-based

networking system, by utilizing the netgraph socket node type (see ng_socket(4)).

The NgMkSockNode() function should be called first, to create a new socket type netgraph node with

associated control and data sockets. If name is non-NULL, the node will have that global name assigned

to it. The csp and dsp arguments will be set to the newly opened control and data sockets associated

with the node; either csp or dsp may be NULL if only one socket is desired. The NgMkSockNode()

function loads the socket node type KLD if it is not already loaded.

The NgNameNode() function assigns a global name to the node addressed by path.

The NgSendMsg() function sends a binary control message from the socket node associated with control

socket cs to the node addressed by path. The cookie indicates how to interpret cmd, which indicates a

specific command. Extra argument data (if any) is specified by arg and arglen. The cookie, cmd, and

argument data are defined by the header file corresponding to the type of the node being addressed. The

unique, non-negative token value chosen for use in the message header is returned. This value is

typically used to associate replies.

Use NgSendReplyMsg() to send reply to a previously received control message. The original message

header should be pointed to by msg.

The NgSendAsciiMsg() function performs the same function as NgSendMsg(), but adds support for

ASCII encoding of control messages. The NgSendAsciiMsg() function formats its input a la printf(3)

and then sends the resulting ASCII string to the node in a NGM_ASCII2BINARY control message. The

node returns a binary version of the message, which is then sent back to the node just as with

NgSendMsg(). As with NgSendMsg(), the message token value is returned. Note that ASCII

conversion may not be supported by all node types.

NETGRAPH(3) FreeBSD Library Functions Manual NETGRAPH(3)

FreeBSD 14.0-RELEASE-p6 May 15, 2020 FreeBSD 14.0-RELEASE-p6

The NgRecvMsg() function reads the next control message received by the node associated with control

socket cs. The message and any extra argument data must fit in replen bytes. If path is non-NULL, it

must point to a buffer of at least NG_PATHSIZ bytes, which will be filled in (and NUL terminated) with

the path to the node from which the message was received.

The length of the control message is returned. A return value of zero indicates that the socket was

closed.

The NgAllocRecvMsg() function works exactly like NgRecvMsg(), except that the buffer for a message

is dynamically allocated to guarantee that a message is not truncated. The size of the buffer is equal to

the socket’s receive buffer size. The caller is responsible for freeing the buffer when it is no longer

required.

The NgRecvAsciiMsg() function works exactly like NgRecvMsg(), except that after the message is

received, any binary arguments are converted to ASCII by sending a NGM_BINARY2ASCII request

back to the originating node. The result is the same as NgRecvMsg(), with the exception that the reply

arguments field will contain a NUL-terminated ASCII version of the arguments (and the reply header

argument length field will be adjusted).

The NgAllocRecvAsciiMsg() function works exactly like NgRecvAsciiMsg(), except that the buffer for

a message is dynamically allocated to guarantee that a message is not truncated. The size of the buffer is

equal to the socket’s receive buffer size. The caller is responsible for freeing the buffer when it is no

longer required.

The NgSendData() function writes a data packet out on the specified hook of the node corresponding to

data socket ds. The node must already be connected to some other node via that hook.

The NgRecvData() function reads the next data packet (of up to len bytes) received by the node

corresponding to data socket ds and stores it in buf, which must be large enough to hold the entire

packet. If hook is non-NULL, it must point to a buffer of at least NG_HOOKSIZ bytes, which will be

filled in (and NUL terminated) with the name of the hook on which the data was received.

The length of the packet is returned. A return value of zero indicates that the socket was closed.

The NgAllocRecvData() function works exactly like NgRecvData(), except that the buffer for a data

packet is dynamically allocated to guarantee that a data packet is not truncated. The size of the buffer is

equal to the socket’s receive buffer size. The caller is responsible for freeing the buffer when it is no

longer required.

The NgSetDebug() and NgSetErrLog() functions are used for debugging. The NgSetDebug() function

NETGRAPH(3) FreeBSD Library Functions Manual NETGRAPH(3)

FreeBSD 14.0-RELEASE-p6 May 15, 2020 FreeBSD 14.0-RELEASE-p6

sets the debug level (if non-negative), and returns the old setting. Higher debug levels result in more

verbosity. The default is zero. All debug and error messages are logged via the functions specified in

the most recent call to NgSetErrLog(). The default logging functions are vwarn(3) and vwarnx(3).

At debug level 3, the library attempts to display control message arguments in ASCII format; however,

this results in additional messages being sent which may interfere with debugging. At even higher

levels, even these additional messages will be displayed, etc.

Note that select(2) can be used on the data and the control sockets to detect the presence of incoming

data and control messages, respectively. Data and control packets are always written and read

atomically, i.e., in one whole piece.

User mode programs must be linked with the -lnetgraph flag to link in this library.

INITIALIZATION
To enable netgraph in your kernel, either your kernel must be compiled with options NETGRAPH in the

kernel configuration file, or else the netgraph(4) and ng_socket(4) KLD modules must have been loaded

via kldload(8).

RETURN VALUES
The NgSetDebug() function returns the previous debug setting.

The NgSetErrLog() function has no return value.

All other functions return -1 if there was an error and set errno accordingly.

A return value of zero from NgRecvMsg() or NgRecvData() indicates that the netgraph socket has been

closed.

For NgSendAsciiMsg() and NgRecvAsciiMsg(), the following additional errors are possible:

[ENOSYS] The node type does not know how to encode or decode the control message.

[ERANGE] The encoded or decoded arguments were too long for the supplied buffer.

[ENOENT] An unknown structure field was seen in an ASCII control message.

[EALREADY] The same structure field was specified twice in an ASCII control message.

[EINVAL] ASCII control message parse error or illegal value.

NETGRAPH(3) FreeBSD Library Functions Manual NETGRAPH(3)

FreeBSD 14.0-RELEASE-p6 May 15, 2020 FreeBSD 14.0-RELEASE-p6

[E2BIG] ASCII control message array or fixed width string buffer overflow.

SEE ALSO
select(2), socket(2), warnx(3), kld(4), netgraph(4), ng_socket(4)

HISTORY
The netgraph system was designed and first implemented at Whistle Communications, Inc. in a version

of FreeBSD 2.2 customized for the Whistle InterJet.

AUTHORS
Archie Cobbs <archie@FreeBSD.org>

NETGRAPH(3) FreeBSD Library Functions Manual NETGRAPH(3)

FreeBSD 14.0-RELEASE-p6 May 15, 2020 FreeBSD 14.0-RELEASE-p6

