
NAME
OSSL_CMP_CTX_new, OSSL_CMP_CTX_free, OSSL_CMP_CTX_reinit,

OSSL_CMP_CTX_set_option, OSSL_CMP_CTX_get_option, OSSL_CMP_CTX_set_log_cb,

OSSL_CMP_CTX_set_log_verbosity, OSSL_CMP_CTX_print_errors,

OSSL_CMP_CTX_set1_serverPath, OSSL_CMP_CTX_set1_server,

OSSL_CMP_CTX_set_serverPort, OSSL_CMP_CTX_set1_proxy, OSSL_CMP_CTX_set1_no_proxy,

OSSL_CMP_CTX_set_http_cb, OSSL_CMP_CTX_set_http_cb_arg,

OSSL_CMP_CTX_get_http_cb_arg, OSSL_CMP_transfer_cb_t, OSSL_CMP_CTX_set_transfer_cb,

OSSL_CMP_CTX_set_transfer_cb_arg, OSSL_CMP_CTX_get_transfer_cb_arg,

OSSL_CMP_CTX_set1_srvCert, OSSL_CMP_CTX_set1_expected_sender,

OSSL_CMP_CTX_set0_trustedStore, OSSL_CMP_CTX_get0_trustedStore,

OSSL_CMP_CTX_set1_untrusted, OSSL_CMP_CTX_get0_untrusted, OSSL_CMP_CTX_set1_cert,

OSSL_CMP_CTX_build_cert_chain, OSSL_CMP_CTX_set1_pkey,

OSSL_CMP_CTX_set1_referenceValue, OSSL_CMP_CTX_set1_secretValue,

OSSL_CMP_CTX_set1_recipient, OSSL_CMP_CTX_push0_geninfo_ITAV,

OSSL_CMP_CTX_reset_geninfo_ITAVs, OSSL_CMP_CTX_set1_extraCertsOut,

OSSL_CMP_CTX_set0_newPkey, OSSL_CMP_CTX_get0_newPkey, OSSL_CMP_CTX_set1_issuer,

OSSL_CMP_CTX_set1_subjectName, OSSL_CMP_CTX_push1_subjectAltName,

OSSL_CMP_CTX_set0_reqExtensions, OSSL_CMP_CTX_reqExtensions_have_SAN,

OSSL_CMP_CTX_push0_policy, OSSL_CMP_CTX_set1_oldCert, OSSL_CMP_CTX_set1_p10CSR,

OSSL_CMP_CTX_push0_genm_ITAV, OSSL_CMP_certConf_cb_t, OSSL_CMP_certConf_cb,

OSSL_CMP_CTX_set_certConf_cb, OSSL_CMP_CTX_set_certConf_cb_arg,

OSSL_CMP_CTX_get_certConf_cb_arg, OSSL_CMP_CTX_get_status,

OSSL_CMP_CTX_get0_statusString, OSSL_CMP_CTX_get_failInfoCode,

OSSL_CMP_CTX_get0_newCert, OSSL_CMP_CTX_get1_newChain,

OSSL_CMP_CTX_get1_caPubs, OSSL_CMP_CTX_get1_extraCertsIn,

OSSL_CMP_CTX_set1_transactionID, OSSL_CMP_CTX_set1_senderNonce - functions for

managing the CMP client context data structure

SYNOPSIS
#include <openssl/cmp.h>

OSSL_CMP_CTX *OSSL_CMP_CTX_new(OSSL_LIB_CTX *libctx, const char *propq);

void OSSL_CMP_CTX_free(OSSL_CMP_CTX *ctx);

int OSSL_CMP_CTX_reinit(OSSL_CMP_CTX *ctx);

int OSSL_CMP_CTX_set_option(OSSL_CMP_CTX *ctx, int opt, int val);

int OSSL_CMP_CTX_get_option(const OSSL_CMP_CTX *ctx, int opt);

/* logging and error reporting: */

int OSSL_CMP_CTX_set_log_cb(OSSL_CMP_CTX *ctx, OSSL_CMP_log_cb_t cb);

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

#define OSSL_CMP_CTX_set_log_verbosity(ctx, level)

void OSSL_CMP_CTX_print_errors(const OSSL_CMP_CTX *ctx);

/* message transfer: */

int OSSL_CMP_CTX_set1_serverPath(OSSL_CMP_CTX *ctx, const char *path);

int OSSL_CMP_CTX_set1_server(OSSL_CMP_CTX *ctx, const char *address);

int OSSL_CMP_CTX_set_serverPort(OSSL_CMP_CTX *ctx, int port);

int OSSL_CMP_CTX_set1_proxy(OSSL_CMP_CTX *ctx, const char *name);

int OSSL_CMP_CTX_set1_no_proxy(OSSL_CMP_CTX *ctx, const char *names);

int OSSL_CMP_CTX_set_http_cb(OSSL_CMP_CTX *ctx, HTTP_bio_cb_t cb);

int OSSL_CMP_CTX_set_http_cb_arg(OSSL_CMP_CTX *ctx, void *arg);

void *OSSL_CMP_CTX_get_http_cb_arg(const OSSL_CMP_CTX *ctx);

typedef OSSL_CMP_MSG *(*OSSL_CMP_transfer_cb_t)(OSSL_CMP_CTX *ctx,

const OSSL_CMP_MSG *req);

int OSSL_CMP_CTX_set_transfer_cb(OSSL_CMP_CTX *ctx,

OSSL_CMP_transfer_cb_t cb);

int OSSL_CMP_CTX_set_transfer_cb_arg(OSSL_CMP_CTX *ctx, void *arg);

void *OSSL_CMP_CTX_get_transfer_cb_arg(const OSSL_CMP_CTX *ctx);

/* server authentication: */

int OSSL_CMP_CTX_set1_srvCert(OSSL_CMP_CTX *ctx, X509 *cert);

int OSSL_CMP_CTX_set1_expected_sender(OSSL_CMP_CTX *ctx,

const X509_NAME *name);

int OSSL_CMP_CTX_set0_trustedStore(OSSL_CMP_CTX *ctx, X509_STORE *store);

X509_STORE *OSSL_CMP_CTX_get0_trustedStore(const OSSL_CMP_CTX *ctx);

int OSSL_CMP_CTX_set1_untrusted(OSSL_CMP_CTX *ctx, STACK_OF(X509) *certs);

STACK_OF(X509) *OSSL_CMP_CTX_get0_untrusted(const OSSL_CMP_CTX *ctx);

/* client authentication: */

int OSSL_CMP_CTX_set1_cert(OSSL_CMP_CTX *ctx, X509 *cert);

int OSSL_CMP_CTX_build_cert_chain(OSSL_CMP_CTX *ctx, X509_STORE *own_trusted,

STACK_OF(X509) *candidates);

int OSSL_CMP_CTX_set1_pkey(OSSL_CMP_CTX *ctx, EVP_PKEY *pkey);

int OSSL_CMP_CTX_set1_referenceValue(OSSL_CMP_CTX *ctx,

const unsigned char *ref, int len);

int OSSL_CMP_CTX_set1_secretValue(OSSL_CMP_CTX *ctx,

const unsigned char *sec, int len);

/* CMP message header and extra certificates: */

int OSSL_CMP_CTX_set1_recipient(OSSL_CMP_CTX *ctx, const X509_NAME *name);

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

int OSSL_CMP_CTX_push0_geninfo_ITAV(OSSL_CMP_CTX *ctx, OSSL_CMP_ITAV *itav);

int OSSL_CMP_CTX_reset_geninfo_ITAVs(OSSL_CMP_CTX *ctx);

int OSSL_CMP_CTX_set1_extraCertsOut(OSSL_CMP_CTX *ctx,

STACK_OF(X509) *extraCertsOut);

/* certificate template: */

int OSSL_CMP_CTX_set0_newPkey(OSSL_CMP_CTX *ctx, int priv, EVP_PKEY *pkey);

EVP_PKEY *OSSL_CMP_CTX_get0_newPkey(const OSSL_CMP_CTX *ctx, int priv);

int OSSL_CMP_CTX_set1_issuer(OSSL_CMP_CTX *ctx, const X509_NAME *name);

int OSSL_CMP_CTX_set1_subjectName(OSSL_CMP_CTX *ctx, const X509_NAME *name);

int OSSL_CMP_CTX_push1_subjectAltName(OSSL_CMP_CTX *ctx,

const GENERAL_NAME *name);

int OSSL_CMP_CTX_set0_reqExtensions(OSSL_CMP_CTX *ctx, X509_EXTENSIONS *exts);

int OSSL_CMP_CTX_reqExtensions_have_SAN(OSSL_CMP_CTX *ctx);

int OSSL_CMP_CTX_push0_policy(OSSL_CMP_CTX *ctx, POLICYINFO *pinfo);

int OSSL_CMP_CTX_set1_oldCert(OSSL_CMP_CTX *ctx, X509 *cert);

int OSSL_CMP_CTX_set1_p10CSR(OSSL_CMP_CTX *ctx, const X509_REQ *csr);

/* misc body contents: */

int OSSL_CMP_CTX_push0_genm_ITAV(OSSL_CMP_CTX *ctx, OSSL_CMP_ITAV *itav);

/* certificate confirmation: */

typedef int (*OSSL_CMP_certConf_cb_t)(OSSL_CMP_CTX *ctx, X509 *cert,

int fail_info, const char **txt);

int OSSL_CMP_certConf_cb(OSSL_CMP_CTX *ctx, X509 *cert, int fail_info,

const char **text);

int OSSL_CMP_CTX_set_certConf_cb(OSSL_CMP_CTX *ctx, OSSL_CMP_certConf_cb_t cb);

int OSSL_CMP_CTX_set_certConf_cb_arg(OSSL_CMP_CTX *ctx, void *arg);

void *OSSL_CMP_CTX_get_certConf_cb_arg(const OSSL_CMP_CTX *ctx);

/* result fetching: */

int OSSL_CMP_CTX_get_status(const OSSL_CMP_CTX *ctx);

OSSL_CMP_PKIFREETEXT *OSSL_CMP_CTX_get0_statusString(const OSSL_CMP_CTX *ctx);

int OSSL_CMP_CTX_get_failInfoCode(const OSSL_CMP_CTX *ctx);

X509 *OSSL_CMP_CTX_get0_newCert(const OSSL_CMP_CTX *ctx);

STACK_OF(X509) *OSSL_CMP_CTX_get1_newChain(const OSSL_CMP_CTX *ctx);

STACK_OF(X509) *OSSL_CMP_CTX_get1_caPubs(const OSSL_CMP_CTX *ctx);

STACK_OF(X509) *OSSL_CMP_CTX_get1_extraCertsIn(const OSSL_CMP_CTX *ctx);

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

/* for testing and debugging purposes: */

int OSSL_CMP_CTX_set1_transactionID(OSSL_CMP_CTX *ctx,

const ASN1_OCTET_STRING *id);

int OSSL_CMP_CTX_set1_senderNonce(OSSL_CMP_CTX *ctx,

const ASN1_OCTET_STRING *nonce);

DESCRIPTION
This is the context API for using CMP (Certificate Management Protocol) with OpenSSL.

OSSL_CMP_CTX_new() allocates an OSSL_CMP_CTX structure associated with the library context

libctx and property query string propq, both of which may be NULL to select the defaults. It initializes

the remaining fields to their default values - for instance, the logging verbosity is set to

OSSL_CMP_LOG_INFO, the message timeout is set to 120 seconds, and the proof-of-possession

method is set to OSSL_CRMF_POPO_SIGNATURE.

OSSL_CMP_CTX_free() deallocates an OSSL_CMP_CTX structure.

OSSL_CMP_CTX_reinit() prepares the given ctx for a further transaction by clearing the internal CMP

transaction (aka session) status, PKIStatusInfo, and any previous results (newCert, newChain, caPubs,

and extraCertsIn) from the last executed transaction. It also clears any ITAVs that were added by

OSSL_CMP_CTX_push0_genm_ITAV(). All other field values (i.e., CMP options) are retained for

potential reuse.

OSSL_CMP_CTX_set_option() sets the given value for the given option (e.g.,

OSSL_CMP_OPT_IMPLICIT_CONFIRM) in the given OSSL_CMP_CTX structure.

The following options can be set:

OSSL_CMP_OPT_LOG_VERBOSITY
The level of severity needed for actually outputting log messages

due to errors, warnings, general info, debugging, etc.

Default is OSSL_CMP_LOG_INFO. See also L<OSSL_CMP_log_open(3)>.

OSSL_CMP_OPT_KEEP_ALIVE
If the given value is 0 then HTTP connections are not kept open

after receiving a response, which is the default behavior for HTTP 1.0.

If the value is 1 or 2 then persistent connections are requested.

If the value is 2 then persistent connections are required,

i.e., in case the server does not grant them an error occurs.

The default value is 1: prefer to keep the connection open.

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

OSSL_CMP_OPT_MSG_TIMEOUT
Number of seconds a CMP request-response message round trip

is allowed to take before a timeout error is returned.

A value <= 0 means no limitation (waiting indefinitely).

Default is to use the B<OSSL_CMP_OPT_TOTAL_TIMEOUT> setting.

OSSL_CMP_OPT_TOTAL_TIMEOUT
Maximum total number of seconds a transaction may take,

including polling etc.

A value <= 0 means no limitation (waiting indefinitely).

Default is 0.

OSSL_CMP_OPT_VALIDITY_DAYS
Number of days new certificates are asked to be valid for.

OSSL_CMP_OPT_SUBJECTALTNAME_NODEFAULT
Do not take default Subject Alternative Names

from the reference certificate.

OSSL_CMP_OPT_SUBJECTALTNAME_CRITICAL
Demand that the given Subject Alternative Names are flagged as critical.

OSSL_CMP_OPT_POLICIES_CRITICAL
Demand that the given policies are flagged as critical.

OSSL_CMP_OPT_POPO_METHOD
Select the proof of possession method to use. Possible values are:

OSSL_CRMF_POPO_NONE - ProofOfPossession field omitted

OSSL_CRMF_POPO_RAVERIFIED - assert that the RA has already

verified the PoPo

OSSL_CRMF_POPO_SIGNATURE - sign a value with private key,

which is the default.

OSSL_CRMF_POPO_KEYENC - decrypt the encrypted certificate

("indirect method")

Note that a signature-based POPO can only be produced if a private key

is provided as the newPkey or client’s pkey component of the CMP context.

OSSL_CMP_OPT_DIGEST_ALGNID

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

The NID of the digest algorithm to be used in RFC 4210’s MSG_SIG_ALG

for signature-based message protection and Proof-of-Possession (POPO).

Default is SHA256.

OSSL_CMP_OPT_OWF_ALGNID The NID of the digest algorithm to be used as one-way function

(OWF) for MAC-based message protection with password-based MAC (PBM). See RFC 4210 section

5.1.3.1 for details. Default is SHA256.

OSSL_CMP_OPT_MAC_ALGNID The NID of the MAC algorithm to be used for message protection

with PBM. Default is HMAC-SHA1 as per RFC 4210.

OSSL_CMP_OPT_REVOCATION_REASON
The reason code to be included in a Revocation Request (RR);

values: 0..10 (RFC 5210, 5.3.1) or -1 for none, which is the default.

OSSL_CMP_OPT_IMPLICIT_CONFIRM
Request server to enable implicit confirm mode, where the client

does not need to send confirmation upon receiving the

certificate. If the server does not enable implicit confirmation

in the return message, then confirmation is sent anyway.

OSSL_CMP_OPT_DISABLE_CONFIRM
Do not confirm enrolled certificates, to cope with broken servers

not supporting implicit confirmation correctly.

B<WARNING:> This setting leads to unspecified behavior and it is meant

exclusively to allow interoperability with server implementations violating

RFC 4210.

OSSL_CMP_OPT_UNPROTECTED_SEND
Send request or response messages without CMP-level protection.

OSSL_CMP_OPT_UNPROTECTED_ERRORS
Accept unprotected error responses which are either explicitly

unprotected or where protection verification failed. Applies to regular

error messages as well as certificate responses (IP/CP/KUP) and

revocation responses (RP) with rejection.

B<WARNING:> This setting leads to unspecified behavior and it is meant

exclusively to allow interoperability with server implementations violating

RFC 4210.

OSSL_CMP_OPT_IGNORE_KEYUSAGE
Ignore key usage restrictions in the signer’s certificate when

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

validating signature-based protection in received CMP messages.

Else, ’digitalSignature’ must be allowed by CMP signer certificates.

OSSL_CMP_OPT_PERMIT_TA_IN_EXTRACERTS_FOR_IR
Allow retrieving a trust anchor from extraCerts and using that

to validate the certificate chain of an IP message.

OSSL_CMP_CTX_get_option() reads the current value of the given option (e.g.,

OSSL_CMP_OPT_IMPLICIT_CONFIRM) from the given OSSL_CMP_CTX structure.

OSSL_CMP_CTX_set_log_cb() sets in ctx the callback function cb for handling error queue entries

and logging messages. When cb is NULL errors are printed to STDERR (if available, else ignored)

any log messages are ignored. Alternatively, OSSL_CMP_log_open(3) may be used to direct logging

to STDOUT.

OSSL_CMP_CTX_set_log_verbosity() is a macro setting the OSSL_CMP_OPT_LOG_VERBOSITY

context option to the given level.

OSSL_CMP_CTX_print_errors() outputs any entries in the OpenSSL error queue. It is similar to

ERR_print_errors_cb(3) but uses the CMP log callback function if set in the ctx for uniformity with

CMP logging if given. Otherwise it uses ERR_print_errors(3) to print to STDERR (unless

OPENSSL_NO_STDIO is defined).

OSSL_CMP_CTX_set1_serverPath() sets the HTTP path of the CMP server on the host, also known as

"CMP alias". The default is "/".

OSSL_CMP_CTX_set1_server() sets the given server address (which may be a hostname or IP address

or NULL) in the given ctx.

OSSL_CMP_CTX_set_serverPort() sets the port of the CMP server to connect to. If not used or the

port argument is 0 the default port applies, which is 80 for HTTP and 443 for HTTPS.

OSSL_CMP_CTX_set1_proxy() sets the HTTP proxy to be used for connecting to the given CMP

server unless overruled by any "no_proxy" settings (see below). If TLS is not used this defaults to the

value of the environment variable "http_proxy" if set, else "HTTP_PROXY". Otherwise defaults to the

value of "https_proxy" if set, else "HTTPS_PROXY". An empty proxy string specifies not to use a

proxy. Else the format is "[http[s]://]address[:port][/path]", where any path given is ignored. The

default port number is 80, or 443 in case "https:" is given.

OSSL_CMP_CTX_set1_no_proxy() sets the list of server hostnames not to use an HTTP proxy for.

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

The names may be separated by commas and/or whitespace. Defaults to the environment variable

"no_proxy" if set, else "NO_PROXY".

OSSL_CMP_CTX_set_http_cb() sets the optional BIO connect/disconnect callback function, which

has the prototype

typedef BIO *(*HTTP_bio_cb_t) (BIO *bio, void *ctx, int connect, int detail);

The callback may modify the bio provided by OSSL_CMP_MSG_http_perform(3), whereby it may

make use of a custom defined argument ctx stored in the OSSL_CMP_CTX by means of

OSSL_CMP_CTX_set_http_cb_arg(). During connection establishment, just after calling

BIO_do_connect_retry(), the function is invoked with the connect argument being 1 and the detail

argument being 1 if HTTPS is requested, i.e., SSL/TLS should be enabled. On disconnect connect is 0

and detail is 1 in case no error occurred, else 0. For instance, on connect the function may prepend a

TLS BIO to implement HTTPS; after disconnect it may do some diagnostic output and/or specific

cleanup. The function should return NULL to indicate failure. After disconnect the modified BIO will

be deallocated using BIO_free_all().

OSSL_CMP_CTX_set_http_cb_arg() sets an argument, respectively a pointer to a structure containing

arguments, optionally to be used by the http connect/disconnect callback function. arg is not

consumed, and it must therefore explicitly be freed when not needed any more. arg may be NULL to

clear the entry.

OSSL_CMP_CTX_get_http_cb_arg() gets the argument, respectively the pointer to a structure

containing arguments, previously set by OSSL_CMP_CTX_set_http_cb_arg() or NULL if unset.

OSSL_CMP_CTX_set_transfer_cb() sets the message transfer callback function, which has the type

typedef OSSL_CMP_MSG *(*OSSL_CMP_transfer_cb_t) (OSSL_CMP_CTX *ctx,

const OSSL_CMP_MSG *req);

Returns 1 on success, 0 on error.

Default is NULL, which implies the use of OSSL_CMP_MSG_http_perform(3). The callback should

send the CMP request message it obtains via the req parameter and on success return the response, else

it must return NULL. The transfer callback may make use of a custom defined argument stored in the

ctx by means of OSSL_CMP_CTX_set_transfer_cb_arg(), which may be retrieved again through

OSSL_CMP_CTX_get_transfer_cb_arg().

OSSL_CMP_CTX_set_transfer_cb_arg() sets an argument, respectively a pointer to a structure

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

containing arguments, optionally to be used by the transfer callback. arg is not consumed, and it must

therefore explicitly be freed when not needed any more. arg may be NULL to clear the entry.

OSSL_CMP_CTX_get_transfer_cb_arg() gets the argument, respectively the pointer to a structure

containing arguments, previously set by OSSL_CMP_CTX_set_transfer_cb_arg() or NULL if unset.

OSSL_CMP_CTX_set1_srvCert() sets the expected server cert in ctx and trusts it directly (even if it is

expired) when verifying signed response messages. This pins the accepted CMP server and results in

ignoring whatever may be set using OSSL_CMP_CTX_set0_trustedStore(). Any previously set value

is freed. The cert argument may be NULL to clear the entry. If set, the subject of the certificate is also

used as default value for the recipient of CMP requests and as default value for the expected sender of

CMP responses.

OSSL_CMP_CTX_set1_expected_sender() sets the Distinguished Name (DN) expected in the sender

field of incoming CMP messages. Defaults to the subject of the pinned server certificate, if any. This

can be used to make sure that only a particular entity is accepted as CMP message signer, and attackers

are not able to use arbitrary certificates of a trusted PKI hierarchy to fraudulently pose as CMP server.

Note that this gives slightly more freedom than OSSL_CMP_CTX_set1_srvCert(), which pins the

server to the holder of a particular certificate, while the expected sender name will continue to match

after updates of the server cert.

OSSL_CMP_CTX_set0_trustedStore() sets in the CMP context ctx the certificate store of type

X509_STORE containing trusted certificates, typically of root CAs. This is ignored when a certificate

is pinned using OSSL_CMP_CTX_set1_srvCert(). The store may also hold CRLs and a certificate

verification callback function used for signature-based peer authentication. Any store entry already set

before is freed. When given a NULL parameter the entry is cleared.

OSSL_CMP_CTX_get0_trustedStore() extracts from the CMP context ctx the pointer to the currently

set certificate store containing trust anchors etc., or an empty store if unset.

OSSL_CMP_CTX_set1_untrusted() sets up a list of non-trusted certificates of intermediate CAs that

may be useful for path construction for the own CMP signer certificate, for the own TLS certificate (if

any), when verifying peer CMP protection certificates, and when verifying newly enrolled certificates.

The reference counts of those certificates handled successfully are increased.

OSSL_CMP_CTX_get0_untrusted(OSSL_CMP_CTX *ctx) returns a pointer to the list of untrusted

certs, which may be empty if unset.

OSSL_CMP_CTX_set1_cert() sets the CMP signer certificate, also called protection certificate, related

to the private key for signature-based message protection. Therefore the public key of this cert must

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

correspond to the private key set before or thereafter via OSSL_CMP_CTX_set1_pkey(). When using

signature-based protection of CMP request messages this CMP signer certificate will be included first

in the extraCerts field. It serves as fallback reference certificate, see

OSSL_CMP_CTX_set1_oldCert(). The subject of this cert will be used as the sender field of outgoing

messages, while the subject of any cert set via OSSL_CMP_CTX_set1_oldCert() and any value set via

OSSL_CMP_CTX_set1_subjectName() are used as fallback.

The cert argument may be NULL to clear the entry.

OSSL_CMP_CTX_build_cert_chain() builds a certificate chain for the CMP signer certificate

previously set in the ctx. It adds the optional candidates, a list of intermediate CA certs that may

already constitute the targeted chain, to the untrusted certs that may already exist in the ctx. Then the

function uses this augmented set of certs for chain construction. If own_trusted is NULL it builds the

chain as far down as possible and ignores any verification errors. Else the CMP signer certificate must

be verifiable where the chain reaches a trust anchor contained in own_trusted. On success the function

stores the resulting chain in ctx for inclusion in the extraCerts field of signature-protected messages.

Calling this function is optional; by default a chain construction is performed on demand that is

equivalent to calling this function with the candidates and own_trusted arguments being NULL.

OSSL_CMP_CTX_set1_pkey() sets the client’s private key corresponding to the CMP signer

certificate set via OSSL_CMP_CTX_set1_cert(). This key is used create signature-based protection

(protectionAlg = MSG_SIG_ALG) of outgoing messages unless a symmetric secret has been set via

OSSL_CMP_CTX_set1_secretValue(). The pkey argument may be NULL to clear the entry.

OSSL_CMP_CTX_set1_secretValue() sets in ctx the byte string sec of length len to use as pre-shared

secret, or clears it if the sec argument is NULL. If present, this secret is used to create MAC-based

authentication and integrity protection (rather than applying signature-based protection) of outgoing

messages and to verify authenticity and integrity of incoming messages that have MAC-based

protection (protectionAlg = "MSG_MAC_ALG").

OSSL_CMP_CTX_set1_referenceValue() sets the given referenceValue ref with length len in the

given ctx or clears it if the ref argument is NULL. According to RFC 4210 section 5.1.1, if no value for

the sender field in CMP message headers can be determined (i.e., no CMP signer certificate and no

subject DN is set via OSSL_CMP_CTX_set1_subjectName() then the sender field will contain the

NULL-DN and the senderKID field of the CMP message header must be set. When signature-based

protection is used the senderKID will be set to the subjectKeyIdentifier of the CMP signer certificate as

far as present. If not present or when MAC-based protection is used the ref value is taken as the

fallback value for the senderKID.

OSSL_CMP_CTX_set1_recipient() sets the recipient name that will be used in the PKIHeader of CMP

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

request messages, i.e. the X509 name of the (CA) server.

The recipient field in the header of a CMP message is mandatory. If not given explicitly the recipient

is determined in the following order: the subject of the CMP server certificate set using

OSSL_CMP_CTX_set1_srvCert(), the value set using OSSL_CMP_CTX_set1_issuer(), the issuer of

the certificate set using OSSL_CMP_CTX_set1_oldCert(), the issuer of the CMP signer certificate, as

far as any of those is present, else the NULL-DN as last resort.

OSSL_CMP_CTX_push0_geninfo_ITAV() adds itav to the stack in the ctx to be added to the

GeneralInfo field of the CMP PKIMessage header of a request message sent with this context.

OSSL_CMP_CTX_reset_geninfo_ITAVs() clears any ITAVs that were added by

OSSL_CMP_CTX_push0_geninfo_ITAV().

OSSL_CMP_CTX_set1_extraCertsOut() sets the stack of extraCerts that will be sent to remote.

OSSL_CMP_CTX_set0_newPkey() can be used to explicitly set the given EVP_PKEY structure as the

private or public key to be certified in the CMP context. The priv parameter must be 0 if and only if

the given key is a public key.

OSSL_CMP_CTX_get0_newPkey() gives the key to use for certificate enrollment dependent on fields

of the CMP context structure: the newPkey (which may be a private or public key) if present, else the

public key in the p10CSR if present, else the client’s private key. If the priv parameter is not 0 and the

selected key does not have a private component then NULL is returned.

OSSL_CMP_CTX_set1_issuer() sets the name of the intended issuer that will be set in the

CertTemplate, i.e., the X509 name of the CA server.

OSSL_CMP_CTX_set1_subjectName() sets the subject DN that will be used in the CertTemplate

structure when requesting a new cert. For Key Update Requests (KUR), it defaults to the subject DN of

the reference certificate, see OSSL_CMP_CTX_set1_oldCert(). This default is used for Initialization

Requests (IR) and Certification Requests (CR) only if no SANs are set. The subjectName is also used

as fallback for the sender field of outgoing CMP messages if no reference certificate is available.

OSSL_CMP_CTX_push1_subjectAltName() adds the given X509 name to the list of alternate names

on the certificate template request. This cannot be used if any Subject Alternative Name extension is

set via OSSL_CMP_CTX_set0_reqExtensions(). By default, unless

OSSL_CMP_OPT_SUBJECTALTNAME_NODEFAULT has been set, the Subject Alternative Names

are copied from the reference certificate, see OSSL_CMP_CTX_set1_oldCert(). If set and the subject

DN is not set with OSSL_CMP_CTX_set1_subjectName() then the certificate template of an IR and

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

CR will not be filled with the default subject DN from the reference certificate. If a subject DN is

desired it needs to be set explicitly with OSSL_CMP_CTX_set1_subjectName().

OSSL_CMP_CTX_set0_reqExtensions() sets the X.509v3 extensions to be used in IR/CR/KUR.

OSSL_CMP_CTX_reqExtensions_have_SAN() returns 1 if the context contains a Subject Alternative

Name extension, else 0 or -1 on error.

OSSL_CMP_CTX_push0_policy() adds the certificate policy info object to the X509_EXTENSIONS

of the requested certificate template.

OSSL_CMP_CTX_set1_oldCert() sets the old certificate to be updated in Key Update Requests (KUR)

or to be revoked in Revocation Requests (RR). It must be given for RR, else it defaults to the CMP

signer certificate. The reference certificate determined in this way, if any, is also used for deriving

default subject DN, public key, Subject Alternative Names, and the default issuer entry in the requested

certificate template of IR/CR/KUR. The subject of the reference certificate is used as the sender field

value in CMP message headers. Its issuer is used as default recipient in CMP message headers.

OSSL_CMP_CTX_set1_p10CSR() sets the PKCS#10 CSR to use in P10CR messages. If such a CSR

is provided, its subject, public key, and extension fields are also used as fallback values for the

certificate template of IR/CR/KUR messages.

OSSL_CMP_CTX_push0_genm_ITAV() adds itav to the stack in the ctx which will be the body of a

General Message sent with this context.

OSSL_CMP_certConf_cb() is the default certificate confirmation callback function. If the callback

argument is not NULL it must point to a trust store. In this case the function checks that the newly

enrolled certificate can be verified using this trust store and untrusted certificates from the ctx, which

have been augmented by the list of extraCerts received. During this verification, any certificate status

checking is disabled. If the callback argument is NULL the function tries building an approximate

chain as far as possible using the same untrusted certificates from the ctx, and if this fails it takes the

received extraCerts as fallback. The resulting cert chain can be retrieved using

OSSL_CMP_CTX_get1_newChain().

OSSL_CMP_CTX_set_certConf_cb() sets the callback used for evaluating the newly enrolled

certificate before the library sends, depending on its result, a positive or negative certConf message to

the server. The callback has type

typedef int (*OSSL_CMP_certConf_cb_t) (OSSL_CMP_CTX *ctx, X509 *cert,

int fail_info, const char **txt);

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

and should inspect the certificate it obtains via the cert parameter and may overrule the pre-decision

given in the fail_info and *txt parameters. If it accepts the certificate it must return 0, indicating

success. Else it must return a bit field reflecting PKIFailureInfo with at least one failure bit and may set

the *txt output parameter to point to a string constant with more detail. The transfer callback may

make use of a custom defined argument stored in the ctx by means of

OSSL_CMP_CTX_set_certConf_cb_arg(), which may be retrieved again through

OSSL_CMP_CTX_get_certConf_cb_arg(). Typically, the callback will check at least that the

certificate can be verified using a set of trusted certificates. It also could compare the subject DN and

other fields of the newly enrolled certificate with the certificate template of the request.

OSSL_CMP_CTX_set_certConf_cb_arg() sets an argument, respectively a pointer to a structure

containing arguments, optionally to be used by the certConf callback. arg is not consumed, and it must

therefore explicitly be freed when not needed any more. arg may be NULL to clear the entry.

OSSL_CMP_CTX_get_certConf_cb_arg() gets the argument, respectively the pointer to a structure

containing arguments, previously set by OSSL_CMP_CTX_set_certConf_cb_arg(), or NULL if unset.

OSSL_CMP_CTX_get_status() returns for client contexts the PKIstatus from the last received

CertRepMessage or Revocation Response or error message: =item

OSSL_CMP_PKISTATUS_accepted on successful receipt of a GENP message:

OSSL_CMP_PKISTATUS_request
if an IR/CR/KUR/RR/GENM request message could not be produced,

OSSL_CMP_PKISTATUS_trans
on a transmission error or transaction error for this type of request, and

OSSL_CMP_PKISTATUS_unspecified
if no such request was attempted or OSSL_CMP_CTX_reinit() has been called.

For server contexts it returns OSSL_CMP_PKISTATUS_trans if a transaction is open, otherwise

OSSL_CMP_PKISTATUS_unspecified.

OSSL_CMP_CTX_get0_statusString() returns the statusString from the last received CertRepMessage

or Revocation Response or error message, or NULL if unset.

OSSL_CMP_CTX_get_failInfoCode() returns the error code from the failInfo field of the last received

CertRepMessage or Revocation Response or error message, or -1 if no such response was received or

OSSL_CMP_CTX_reinit() has been called. This is a bit field and the flags for it are specified in the

header file <openssl/cmp.h>. The flags start with OSSL_CMP_CTX_FAILINFO, for example:

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

OSSL_CMP_CTX_FAILINFO_badAlg. Returns -1 if the failInfoCode field is unset.

OSSL_CMP_CTX_get0_newCert() returns the pointer to the newly obtained certificate in case it is

available, else NULL.

OSSL_CMP_CTX_get1_newChain() returns a pointer to a duplicate of the stack of X.509 certificates

computed by OSSL_CMP_certConf_cb() (if this function has been called) on the last received

certificate response message IP/CP/KUP.

OSSL_CMP_CTX_get1_caPubs() returns a pointer to a duplicate of the list of X.509 certificates in the

caPubs field of the last received certificate response message (of type IP, CP, or KUP), or an empty

stack if no caPubs have been received in the current transaction.

OSSL_CMP_CTX_get1_extraCertsIn() returns a pointer to a duplicate of the list of X.509 certificates

contained in the extraCerts field of the last received response message (except for pollRep and

PKIConf), or an empty stack if no extraCerts have been received in the current transaction.

OSSL_CMP_CTX_set1_transactionID() sets the given transaction ID in the given OSSL_CMP_CTX

structure.

OSSL_CMP_CTX_set1_senderNonce() stores the last sent sender nonce in the ctx. This will be used to

validate the recipNonce in incoming messages.

NOTES
CMP is defined in RFC 4210 (and CRMF in RFC 4211).

RETURN VALUES
OSSL_CMP_CTX_free() and OSSL_CMP_CTX_print_errors() do not return anything.

OSSL_CMP_CTX_new(), OSSL_CMP_CTX_get_http_cb_arg(),
OSSL_CMP_CTX_get_transfer_cb_arg(), OSSL_CMP_CTX_get0_trustedStore(),
OSSL_CMP_CTX_get0_untrusted(), OSSL_CMP_CTX_get0_newPkey(),
OSSL_CMP_CTX_get_certConf_cb_arg(), OSSL_CMP_CTX_get0_statusString(),
OSSL_CMP_CTX_get0_newCert(), OSSL_CMP_CTX_get0_newChain(),
OSSL_CMP_CTX_get1_caPubs(), and OSSL_CMP_CTX_get1_extraCertsIn() return the intended

pointer value as described above or NULL on error.

OSSL_CMP_CTX_get_option(), OSSL_CMP_CTX_reqExtensions_have_SAN(),
OSSL_CMP_CTX_get_status(), and OSSL_CMP_CTX_get_failInfoCode() return the intended value

as described above or -1 on error.

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

OSSL_CMP_certConf_cb() returns fail_info if it is not equal to 0, else 0 on successful validation, or

else a bit field with the OSSL_CMP_PKIFAILUREINFO_incorrectData bit set.

All other functions, including OSSL_CMP_CTX_reinit() and

OSSL_CMP_CTX_reset_geninfo_ITAVs(), return 1 on success, 0 on error.

EXAMPLES
The following code omits error handling.

Set up a CMP client context for sending requests and verifying responses:

cmp_ctx = OSSL_CMP_CTX_new();

OSSL_CMP_CTX_set1_server(cmp_ctx, name_or_address);

OSSL_CMP_CTX_set1_serverPort(cmp_ctx, port_string);

OSSL_CMP_CTX_set1_serverPath(cmp_ctx, path_or_alias);

OSSL_CMP_CTX_set0_trustedStore(cmp_ctx, ts);

Set up symmetric credentials for MAC-based message protection such as PBM:

OSSL_CMP_CTX_set1_referenceValue(cmp_ctx, ref, ref_len);

OSSL_CMP_CTX_set1_secretValue(cmp_ctx, sec, sec_len);

Set up the details for certificate requests:

OSSL_CMP_CTX_set1_subjectName(cmp_ctx, name);

OSSL_CMP_CTX_set0_newPkey(cmp_ctx, 1, initialKey);

Perform an Initialization Request transaction:

initialCert = OSSL_CMP_exec_IR_ses(cmp_ctx);

Reset the transaction state of the CMP context and the credentials:

OSSL_CMP_CTX_reinit(cmp_ctx);

OSSL_CMP_CTX_set1_referenceValue(cmp_ctx, NULL, 0);

OSSL_CMP_CTX_set1_secretValue(cmp_ctx, NULL, 0);

Perform a Certification Request transaction, making use of the new credentials:

OSSL_CMP_CTX_set1_cert(cmp_ctx, initialCert);

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

OSSL_CMP_CTX_set1_pkey(cmp_ctx, initialKey);

OSSL_CMP_CTX_set0_newPkey(cmp_ctx, 1, curentKey);

currentCert = OSSL_CMP_exec_CR_ses(cmp_ctx);

Perform a Key Update Request, signed using the cert (and key) to be updated:

OSSL_CMP_CTX_reinit(cmp_ctx);

OSSL_CMP_CTX_set1_cert(cmp_ctx, currentCert);

OSSL_CMP_CTX_set1_pkey(cmp_ctx, currentKey);

OSSL_CMP_CTX_set0_newPkey(cmp_ctx, 1, updatedKey);

currentCert = OSSL_CMP_exec_KUR_ses(cmp_ctx);

currentKey = updatedKey;

Perform a General Message transaction including, as an example, the id-it-signKeyPairTypes OID and

prints info on the General Response contents:

OSSL_CMP_CTX_reinit(cmp_ctx);

ASN1_OBJECT *type = OBJ_txt2obj("1.3.6.1.5.5.7.4.2", 1);

OSSL_CMP_ITAV *itav = OSSL_CMP_ITAV_create(type, NULL);

OSSL_CMP_CTX_push0_genm_ITAV(cmp_ctx, itav);

STACK_OF(OSSL_CMP_ITAV) *itavs;

itavs = OSSL_CMP_exec_GENM_ses(cmp_ctx);

print_itavs(itavs);

sk_OSSL_CMP_ITAV_pop_free(itavs, OSSL_CMP_ITAV_free);

SEE ALSO
OSSL_CMP_exec_IR_ses(3), OSSL_CMP_exec_CR_ses(3), OSSL_CMP_exec_KUR_ses(3),

OSSL_CMP_exec_GENM_ses(3), OSSL_CMP_exec_certreq(3), OSSL_CMP_MSG_http_perform(3),

ERR_print_errors_cb(3)

HISTORY
The OpenSSL CMP support was added in OpenSSL 3.0.

OSSL_CMP_CTX_reset_geninfo_ITAVs() was added in OpenSSL 3.0.8.

COPYRIGHT
Copyright 2007-2023 The OpenSSL Project Authors. All Rights Reserved.

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

OSSL_CMP_CTX_NEW(3ossl) OpenSSL OSSL_CMP_CTX_NEW(3ossl)

3.0.11 2023-09-19 OSSL_CMP_CTX_NEW(3ossl)

