
NAME
OSSL_trace_set_channel, OSSL_trace_set_prefix, OSSL_trace_set_suffix, OSSL_trace_set_callback,

OSSL_trace_cb - Enabling trace output

SYNOPSIS
#include <openssl/trace.h>

typedef size_t (*OSSL_trace_cb)(const char *buf, size_t cnt,

int category, int cmd, void *data);

void OSSL_trace_set_channel(int category, BIO *bio);

void OSSL_trace_set_prefix(int category, const char *prefix);

void OSSL_trace_set_suffix(int category, const char *suffix);

void OSSL_trace_set_callback(int category, OSSL_trace_cb cb, void *data);

DESCRIPTION
If available (see "NOTES" below), the application can request internal trace output. This output comes

in form of free text for humans to read.

The trace output is divided into categories which can be enabled individually. Every category can be

enabled individually by attaching a so called trace channel to it, which in the simplest case is just a BIO

object to which the application can write the tracing output for this category. Alternatively, the

application can provide a tracer callback in order to get more finegrained trace information. This

callback will be wrapped internally by a dedicated BIO object.

For the tracing code, both trace channel types are indistinguishable. These are called a simple trace

channel and a callback trace channel, respectively.

Functions
OSSL_trace_set_channel() is used to enable the given trace "category" by attaching the BIO bio object

as (simple) trace channel. On success the ownership of the BIO is transferred to the channel, so the

caller must not free it directly.

OSSL_trace_set_prefix() and OSSL_trace_set_suffix() can be used to add an extra line for each

channel, to be output before and after group of tracing output. What constitutes an output group is

decided by the code that produces the output. The lines given here are considered immutable; for more

dynamic tracing prefixes, consider setting a callback with OSSL_trace_set_callback() instead.

OSSL_trace_set_callback() is used to enable the given trace category by giving it the tracer callback cb

with the associated data data, which will simply be passed through to cb whenever it’s called. The

OSSL_TRACE_SET_CHANNEL(3ossl) OpenSSL OSSL_TRACE_SET_CHANNEL(3ossl)

3.0.11 2023-09-19 OSSL_TRACE_SET_CHANNEL(3ossl)

callback function is internally wrapped by a dedicated BIO object, the so called callback trace channel.

This should be used when it’s desirable to do form the trace output to something suitable for

application needs where a prefix and suffix line aren’t enough.

OSSL_trace_set_channel() and OSSL_trace_set_callback() are mutually exclusive, calling one of them

will clear whatever was set by the previous call.

Calling OSSL_trace_set_channel() with NULL for channel or OSSL_trace_set_callback() with NULL

for cb disables tracing for the given category.

Trace callback
The tracer callback must return a size_t, which must be zero on error and otherwise return the number

of bytes that were output. It receives a text buffer buf with cnt bytes of text, as well as the category, a

control number cmd, and the data that was passed to OSSL_trace_set_callback().

The possible control numbers are:

OSSL_TRACE_CTRL_BEGIN
The callback is called from OSSL_trace_begin(), which gives the callback the possibility to output

a dynamic starting line, or set a prefix that should be output at the beginning of each line, or

something other.

OSSL_TRACE_CTRL_WRITE
This callback is called whenever data is written to the BIO by some regular BIO output routine.

An arbitrary number of OSSL_TRACE_CTRL_WRITE callbacks can occur inside a group

marked by a pair of OSSL_TRACE_CTRL_BEGIN and OSSL_TRACE_CTRL_END calls, but

never outside such a group.

OSSL_TRACE_CTRL_END
The callback is called from OSSL_trace_end(), which gives the callback the possibility to output a

dynamic ending line, or reset the line prefix that was set with OSSL_TRACE_CTRL_BEGIN, or

something other.

Trace categories
The trace categories are simple numbers available through macros.

OSSL_TRACE_CATEGORY_TRACE
Traces the OpenSSL trace API itself.

More precisely, this will generate trace output any time a new trace hook is set.

OSSL_TRACE_SET_CHANNEL(3ossl) OpenSSL OSSL_TRACE_SET_CHANNEL(3ossl)

3.0.11 2023-09-19 OSSL_TRACE_SET_CHANNEL(3ossl)

OSSL_TRACE_CATEGORY_INIT
Traces OpenSSL library initialization and cleanup.

This needs special care, as OpenSSL will do automatic cleanup after exit from "main()", and any

tracing output done during this cleanup will be lost if the tracing channel or callback were cleaned

away prematurely. A suggestion is to make such cleanup part of a function that’s registered very

early with atexit(3).

OSSL_TRACE_CATEGORY_TLS
Traces the TLS/SSL protocol.

OSSL_TRACE_CATEGORY_TLS_CIPHER
Traces the ciphers used by the TLS/SSL protocol.

OSSL_TRACE_CATEGORY_CONF
Traces details about the provider and engine configuration.

OSSL_TRACE_CATEGORY_ENGINE_TABLE
Traces the ENGINE algorithm table selection.

More precisely, functions like ENGINE_get_pkey_asn1_meth_engine(),
ENGINE_get_pkey_meth_engine(), ENGINE_get_cipher_engine(),
ENGINE_get_digest_engine(), will generate trace summaries of the handling of internal tables.

OSSL_TRACE_CATEGORY_ENGINE_REF_COUNT
Traces the ENGINE reference counting.

More precisely, both reference counts in the ENGINE structure will be monitored with a line of

trace output generated for each change.

OSSL_TRACE_CATEGORY_PKCS5V2
Traces PKCS#5 v2 key generation.

OSSL_TRACE_CATEGORY_PKCS12_KEYGEN
Traces PKCS#12 key generation.

OSSL_TRACE_CATEGORY_PKCS12_DECRYPT
Traces PKCS#12 decryption.

OSSL_TRACE_CATEGORY_X509V3_POLICY

OSSL_TRACE_SET_CHANNEL(3ossl) OpenSSL OSSL_TRACE_SET_CHANNEL(3ossl)

3.0.11 2023-09-19 OSSL_TRACE_SET_CHANNEL(3ossl)

Traces X509v3 policy processing.

More precisely, this generates the complete policy tree at various point during evaluation.

OSSL_TRACE_CATEGORY_BN_CTX
Traces BIGNUM context operations.

OSSL_TRACE_CATEGORY_CMP
Traces CMP client and server activity.

OSSL_TRACE_CATEGORY_STORE
Traces STORE operations.

OSSL_TRACE_CATEGORY_DECODER
Traces decoder operations.

OSSL_TRACE_CATEGORY_ENCODER
Traces encoder operations.

OSSL_TRACE_CATEGORY_REF_COUNT
Traces decrementing certain ASN.1 structure references.

There is also OSSL_TRACE_CATEGORY_ALL, which works as a fallback and can be used to get all

trace output.

Note, however, that in this case all trace output will effectively be associated with the ’ALL’ category,

which is undesirable if the application intends to include the category name in the trace output. In this

case it is better to register separate channels for each trace category instead.

RETURN VALUES
OSSL_trace_set_channel(), OSSL_trace_set_prefix(), OSSL_trace_set_suffix(), and

OSSL_trace_set_callback() return 1 on success, or 0 on failure.

EXAMPLES
In all examples below, the trace producing code is assumed to be the following:

int foo = 42;

const char bar[] = { 0, 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 15 };

OSSL_TRACE_SET_CHANNEL(3ossl) OpenSSL OSSL_TRACE_SET_CHANNEL(3ossl)

3.0.11 2023-09-19 OSSL_TRACE_SET_CHANNEL(3ossl)

OSSL_TRACE_BEGIN(TLS) {

BIO_puts(trc_out, "foo: ");

BIO_printf(trc_out, "%d\n", foo);

BIO_dump(trc_out, bar, sizeof(bar));

} OSSL_TRACE_END(TLS);

Simple example
An example with just a channel and constant prefix / suffix.

int main(int argc, char *argv[])

{

BIO *err = BIO_new_fp(stderr, BIO_NOCLOSE | BIO_FP_TEXT);

OSSL_trace_set_channel(OSSL_TRACE_CATEGORY_SSL, err);

OSSL_trace_set_prefix(OSSL_TRACE_CATEGORY_SSL, "BEGIN TRACE[TLS]");

OSSL_trace_set_suffix(OSSL_TRACE_CATEGORY_SSL, "END TRACE[TLS]");

/* ... work ... */

}

When the trace producing code above is performed, this will be output on standard error:

BEGIN TRACE[TLS]

foo: 42

0000 - 00 01 02 03 04 05 06 07-08 09 0a 0b 0c 0d 0e 0f

END TRACE[TLS]

Advanced example
This example uses the callback, and depends on pthreads functionality.

static size_t cb(const char *buf, size_t cnt,

int category, int cmd, void *vdata)

{

BIO *bio = vdata;

const char *label = NULL;

switch (cmd) {

case OSSL_TRACE_CTRL_BEGIN:

label = "BEGIN";

break;

case OSSL_TRACE_CTRL_END:

OSSL_TRACE_SET_CHANNEL(3ossl) OpenSSL OSSL_TRACE_SET_CHANNEL(3ossl)

3.0.11 2023-09-19 OSSL_TRACE_SET_CHANNEL(3ossl)

label = "END";

break;

}

if (label != NULL) {

union {

pthread_t tid;

unsigned long ltid;

} tid;

tid.tid = pthread_self();

BIO_printf(bio, "%s TRACE[%s]:%lx\n",

label, OSSL_trace_get_category_name(category), tid.ltid);

}

return (size_t)BIO_puts(bio, buf);

}

int main(int argc, char *argv[])

{

BIO *err = BIO_new_fp(stderr, BIO_NOCLOSE | BIO_FP_TEXT);

OSSL_trace_set_callback(OSSL_TRACE_CATEGORY_SSL, cb, err);

/* ... work ... */

}

The output is almost the same as for the simple example above.

BEGIN TRACE[TLS]:7f9eb0193b80

foo: 42

0000 - 00 01 02 03 04 05 06 07-08 09 0a 0b 0c 0d 0e 0f

END TRACE[TLS]:7f9eb0193b80

NOTES
Configure Tracing

By default, the OpenSSL library is built with tracing disabled. To use the tracing functionality

documented here, it is therefore necessary to configure and build OpenSSL with the ’enable-trace’

option.

When the library is built with tracing disabled, the macro OPENSSL_NO_TRACE is defined in

<openssl/opensslconf.h> and all functions described here are inoperational, i.e. will do nothing.

OSSL_TRACE_SET_CHANNEL(3ossl) OpenSSL OSSL_TRACE_SET_CHANNEL(3ossl)

3.0.11 2023-09-19 OSSL_TRACE_SET_CHANNEL(3ossl)

HISTORY
OSSL_trace_set_channel(), OSSL_trace_set_prefix(), OSSL_trace_set_suffix(), and

OSSL_trace_set_callback() were all added in OpenSSL 3.0.

COPYRIGHT
Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

OSSL_TRACE_SET_CHANNEL(3ossl) OpenSSL OSSL_TRACE_SET_CHANNEL(3ossl)

3.0.11 2023-09-19 OSSL_TRACE_SET_CHANNEL(3ossl)

