
NAME
RAND_bytes, RAND_priv_bytes, RAND_bytes_ex, RAND_priv_bytes_ex, RAND_pseudo_bytes -

generate random data

SYNOPSIS
#include <openssl/rand.h>

int RAND_bytes(unsigned char *buf, int num);

int RAND_priv_bytes(unsigned char *buf, int num);

int RAND_bytes_ex(OSSL_LIB_CTX *ctx, unsigned char *buf, size_t num,

unsigned int strength);

int RAND_priv_bytes_ex(OSSL_LIB_CTX *ctx, unsigned char *buf, size_t num,

unsigned int strength);

The following function has been deprecated since OpenSSL 1.1.0, and can be hidden entirely by

defining OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros(7):

int RAND_pseudo_bytes(unsigned char *buf, int num);

DESCRIPTION
RAND_bytes() generates num random bytes using a cryptographically secure pseudo random generator

(CSPRNG) and stores them in buf.

RAND_priv_bytes() has the same semantics as RAND_bytes(). It is intended to be used for generating

values that should remain private. If using the default RAND_METHOD, this function uses a separate

"private" PRNG instance so that a compromise of the "public" PRNG instance will not affect the

secrecy of these private values, as described in RAND(7) and EVP_RAND(7).

RAND_bytes_ex() and RAND_priv_bytes_ex() are the same as RAND_bytes() and

RAND_priv_bytes() except that they both take additional strength and ctx parameters. The bytes

generated will have a security strength of at least strength bits. The DRBG used for the operation is the

public or private DRBG associated with the specified ctx. The parameter can be NULL, in which case

the default library context is used (see OSSL_LIB_CTX(3). If the default RAND_METHOD has been

changed then for compatibility reasons the RAND_METHOD will be used in preference and the

DRBG of the library context ignored.

NOTES
By default, the OpenSSL CSPRNG supports a security level of 256 bits, provided it was able to seed

itself from a trusted entropy source. On all major platforms supported by OpenSSL (including the

RAND_BYTES(3ossl) OpenSSL RAND_BYTES(3ossl)

3.0.11 2023-09-19 RAND_BYTES(3ossl)



Unix-like platforms and Windows), OpenSSL is configured to automatically seed the CSPRNG on first

use using the operating systems’s random generator.

If the entropy source fails or is not available, the CSPRNG will enter an error state and refuse to

generate random bytes. For that reason, it is important to always check the error return value of

RAND_bytes() and RAND_priv_bytes() and not take randomness for granted.

On other platforms, there might not be a trusted entropy source available or OpenSSL might have been

explicitly configured to use different entropy sources. If you are in doubt about the quality of the

entropy source, don’t hesitate to ask your operating system vendor or post a question on GitHub or the

openssl-users mailing list.

RETURN VALUES
RAND_bytes() and RAND_priv_bytes() return 1 on success, -1 if not supported by the current RAND

method, or 0 on other failure. The error code can be obtained by ERR_get_error(3).

SEE ALSO
RAND_add(3), RAND_bytes(3), RAND_priv_bytes(3), ERR_get_error(3), RAND(7), EVP_RAND(7)

HISTORY
+o RAND_pseudo_bytes() was deprecated in OpenSSL 1.1.0; use RAND_bytes() instead.

+o The RAND_priv_bytes() function was added in OpenSSL 1.1.1.

+o The RAND_bytes_ex() and RAND_priv_bytes_ex() functions were added in OpenSSL 3.0

COPYRIGHT
Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

RAND_BYTES(3ossl) OpenSSL RAND_BYTES(3ossl)

3.0.11 2023-09-19 RAND_BYTES(3ossl)


