
NAME
RAND_add, RAND_poll, RAND_seed, RAND_status, RAND_event, RAND_screen,

RAND_keep_random_devices_open - add randomness to the PRNG or get its status

SYNOPSIS
#include <openssl/rand.h>

int RAND_status(void);

int RAND_poll();

void RAND_add(const void *buf, int num, double randomness);

void RAND_seed(const void *buf, int num);

void RAND_keep_random_devices_open(int keep);

The following functions have been deprecated since OpenSSL 1.1.0, and can be hidden entirely by

defining OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros(7):

int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam);

void RAND_screen(void);

DESCRIPTION
These functions can be used to seed the random generator and to check its seeded state. In general,

manual (re-)seeding of the default OpenSSL random generator (RAND_OpenSSL(3)) is not necessary

(but allowed), since it does (re-)seed itself automatically using trusted system entropy sources. This

holds unless the default RAND_METHOD has been replaced or OpenSSL was built with automatic

reseeding disabled, see RAND(7) for more details.

RAND_status() indicates whether or not the random generator has been sufficiently seeded. If not,

functions such as RAND_bytes(3) will fail.

RAND_poll() uses the system’s capabilities to seed the random generator using random input obtained

from polling various trusted entropy sources. The default choice of the entropy source can be modified

at build time, see RAND(7) for more details.

RAND_add() mixes the num bytes at buf into the internal state of the random generator. This function

will not normally be needed, as mentioned above. The randomness argument is an estimate of how

much randomness is contained in buf, in bytes, and should be a number between zero and num. Details

about sources of randomness and how to estimate their randomness can be found in the literature; for

example [NIST SP 800-90B]. The content of buf cannot be recovered from subsequent random

RAND_ADD(3ossl) OpenSSL RAND_ADD(3ossl)

3.0.11 2023-09-19 RAND_ADD(3ossl)



generator output. Applications that intend to save and restore random state in an external file should

consider using RAND_load_file(3) instead.

NOTE: In FIPS mode, random data provided by the application is not considered to be a trusted

entropy source. It is mixed into the internal state of the RNG as additional data only and this does not

count as a full reseed. For more details, see EVP_RAND(7).

RAND_seed() is equivalent to RAND_add() with randomness set to num.

RAND_keep_random_devices_open() is used to control file descriptor usage by the random seed

sources. Some seed sources maintain open file descriptors by default, which allows such sources to

operate in a chroot(2) jail without the associated device nodes being available. When the keep
argument is zero, this call disables the retention of file descriptors. Conversely, a nonzero argument

enables the retention of file descriptors. This function is usually called during initialization and it takes

effect immediately. This capability only applies to the default provider.

RAND_event() and RAND_screen() are equivalent to RAND_poll() and exist for compatibility reasons

only. See HISTORY section below.

RETURN VALUES
RAND_status() returns 1 if the random generator has been seeded with enough data, 0 otherwise.

RAND_poll() returns 1 if it generated seed data, 0 otherwise.

RAND_event() returns RAND_status().

The other functions do not return values.

SEE ALSO
RAND_bytes(3), RAND_egd(3), RAND_load_file(3), RAND(7) EVP_RAND(7)

HISTORY
RAND_event() and RAND_screen() were deprecated in OpenSSL 1.1.0 and should not be used.

COPYRIGHT
Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

RAND_ADD(3ossl) OpenSSL RAND_ADD(3ossl)

3.0.11 2023-09-19 RAND_ADD(3ossl)


