
NAME
SPI_execute - execute a command

SYNOPSIS
int SPI_execute(const char * command, bool read_only, long count)

DESCRIPTION
SPI_execute executes the specified SQL command for count rows. If read_only is true, the command

must be read-only, and execution overhead is somewhat reduced.

This function can only be called from a connected C function.

If count is zero then the command is executed for all rows that it applies to. If count is greater than

zero, then no more than count rows will be retrieved; execution stops when the count is reached, much

like adding a LIMIT clause to the query. For example,

SPI_execute("SELECT * FROM foo", true, 5);

will retrieve at most 5 rows from the table. Note that such a limit is only effective when the command

actually returns rows. For example,

SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);

inserts all rows from bar, ignoring the count parameter. However, with

SPI_execute("INSERT INTO foo SELECT * FROM bar RETURNING *", false, 5);

at most 5 rows would be inserted, since execution would stop after the fifth RETURNING result row is

retrieved.

You can pass multiple commands in one string; SPI_execute returns the result for the command

executed last. The count limit applies to each command separately (even though only the last result will

actually be returned). The limit is not applied to any hidden commands generated by rules.

When read_only is false, SPI_execute increments the command counter and computes a new snapshot

before executing each command in the string. The snapshot does not actually change if the current

transaction isolation level is SERIALIZABLE or REPEATABLE READ, but in READ COMMITTED

mode the snapshot update allows each command to see the results of newly committed transactions

from other sessions. This is essential for consistent behavior when the commands are modifying the

database.

SPI_EXECUTE(3) PostgreSQL 15.4 Documentation SPI_EXECUTE(3)

PostgreSQL 15.4 2023 SPI_EXECUTE(3)



When read_only is true, SPI_execute does not update either the snapshot or the command counter, and

it allows only plain SELECT commands to appear in the command string. The commands are executed

using the snapshot previously established for the surrounding query. This execution mode is somewhat

faster than the read/write mode due to eliminating per-command overhead. It also allows genuinely

stable functions to be built: since successive executions will all use the same snapshot, there will be no

change in the results.

It is generally unwise to mix read-only and read-write commands within a single function using SPI;

that could result in very confusing behavior, since the read-only queries would not see the results of

any database updates done by the read-write queries.

The actual number of rows for which the (last) command was executed is returned in the global

variable SPI_processed. If the return value of the function is SPI_OK_SELECT,

SPI_OK_INSERT_RETURNING, SPI_OK_DELETE_RETURNING, or

SPI_OK_UPDATE_RETURNING, then you can use the global pointer SPITupleTable *SPI_tuptable

to access the result rows. Some utility commands (such as EXPLAIN) also return row sets, and

SPI_tuptable will contain the result in these cases too. Some utility commands (COPY, CREATE
TABLE AS) don’t return a row set, so SPI_tuptable is NULL, but they still return the number of rows

processed in SPI_processed.

The structure SPITupleTable is defined thus:

typedef struct SPITupleTable

{

/* Public members */

TupleDesc tupdesc; /* tuple descriptor */

HeapTuple *vals; /* array of tuples */

uint64 numvals; /* number of valid tuples */

/* Private members, not intended for external callers */

uint64 alloced; /* allocated length of vals array */

MemoryContext tuptabcxt; /* memory context of result table */

slist_node next; /* link for internal bookkeeping */

SubTransactionId subid; /* subxact in which tuptable was created */

} SPITupleTable;

The fields tupdesc, vals, and numvals can be used by SPI callers; the remaining fields are internal. vals

is an array of pointers to rows. The number of rows is given by numvals (for somewhat historical

reasons, this count is also returned in SPI_processed). tupdesc is a row descriptor which you can pass

to SPI functions dealing with rows.

SPI_EXECUTE(3) PostgreSQL 15.4 Documentation SPI_EXECUTE(3)

PostgreSQL 15.4 2023 SPI_EXECUTE(3)



SPI_finish frees all SPITupleTables allocated during the current C function. You can free a particular

result table earlier, if you are done with it, by calling SPI_freetuptable.

ARGUMENTS
const char * command

string containing command to execute

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

RETURN VALUE
If the execution of the command was successful then one of the following (nonnegative) values will be

returned:

SPI_OK_SELECT

if a SELECT (but not SELECT INTO) was executed

SPI_OK_SELINTO

if a SELECT INTO was executed

SPI_OK_INSERT

if an INSERT was executed

SPI_OK_DELETE

if a DELETE was executed

SPI_OK_UPDATE

if an UPDATE was executed

SPI_OK_MERGE

if a MERGE was executed

SPI_OK_INSERT_RETURNING

if an INSERT RETURNING was executed

SPI_OK_DELETE_RETURNING

if a DELETE RETURNING was executed

SPI_EXECUTE(3) PostgreSQL 15.4 Documentation SPI_EXECUTE(3)

PostgreSQL 15.4 2023 SPI_EXECUTE(3)



SPI_OK_UPDATE_RETURNING

if an UPDATE RETURNING was executed

SPI_OK_UTILITY

if a utility command (e.g., CREATE TABLE) was executed

SPI_OK_REWRITTEN

if the command was rewritten into another kind of command (e.g., UPDATE became an INSERT)

by a rule.

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if command is NULL or count is less than 0

SPI_ERROR_COPY

if COPY TO stdout or COPY FROM stdin was attempted

SPI_ERROR_TRANSACTION

if a transaction manipulation command was attempted (BEGIN, COMMIT, ROLLBACK,

SAVEPOINT, PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED,

or any variant thereof)

SPI_ERROR_OPUNKNOWN

if the command type is unknown (shouldn’t happen)

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

NOTES
All SPI query-execution functions set both SPI_processed and SPI_tuptable (just the pointer, not the

contents of the structure). Save these two global variables into local C function variables if you need to

access the result table of SPI_execute or another query-execution function across later calls.

SPI_EXECUTE(3) PostgreSQL 15.4 Documentation SPI_EXECUTE(3)

PostgreSQL 15.4 2023 SPI_EXECUTE(3)


