
NAME
SPI_prepare - prepare a statement, without executing it yet

SYNOPSIS
SPIPlanPtr SPI_prepare(const char * command, int nargs, Oid * argtypes)

DESCRIPTION
SPI_prepare creates and returns a prepared statement for the specified command, but doesn’t execute

the command. The prepared statement can later be executed repeatedly using SPI_execute_plan.

When the same or a similar command is to be executed repeatedly, it is generally advantageous to

perform parse analysis only once, and might furthermore be advantageous to re-use an execution plan

for the command. SPI_prepare converts a command string into a prepared statement that encapsulates

the results of parse analysis. The prepared statement also provides a place for caching an execution

plan if it is found that generating a custom plan for each execution is not helpful.

A prepared command can be generalized by writing parameters ($1, $2, etc.) in place of what would be

constants in a normal command. The actual values of the parameters are then specified when

SPI_execute_plan is called. This allows the prepared command to be used over a wider range of

situations than would be possible without parameters.

The statement returned by SPI_prepare can be used only in the current invocation of the C function,

since SPI_finish frees memory allocated for such a statement. But the statement can be saved for longer

using the functions SPI_keepplan or SPI_saveplan.

ARGUMENTS
const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

RETURN VALUE
SPI_prepare returns a non-null pointer to an SPIPlan, which is an opaque struct representing a prepared

statement. On error, NULL will be returned, and SPI_result will be set to one of the same error codes

used by SPI_execute, except that it is set to SPI_ERROR_ARGUMENT if command is NULL, or if

nargs is less than 0, or if nargs is greater than 0 and argtypes is NULL.

SPI_PREPARE(3) PostgreSQL 15.4 Documentation SPI_PREPARE(3)

PostgreSQL 15.4 2023 SPI_PREPARE(3)

NOTES
If no parameters are defined, a generic plan will be created at the first use of SPI_execute_plan, and

used for all subsequent executions as well. If there are parameters, the first few uses of

SPI_execute_plan will generate custom plans that are specific to the supplied parameter values. After

enough uses of the same prepared statement, SPI_execute_plan will build a generic plan, and if that is

not too much more expensive than the custom plans, it will start using the generic plan instead of

re-planning each time. If this default behavior is unsuitable, you can alter it by passing the

CURSOR_OPT_GENERIC_PLAN or CURSOR_OPT_CUSTOM_PLAN flag to SPI_prepare_cursor,

to force use of generic or custom plans respectively.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of the

statement, PostgreSQL will force re-analysis and re-planning of the statement before using it whenever

database objects used in the statement have undergone definitional (DDL) changes since the previous

use of the prepared statement. Also, if the value of search_path changes from one use to the next, the

statement will be re-parsed using the new search_path. (This latter behavior is new as of PostgreSQL

9.3.) See PREPARE(7) for more information about the behavior of prepared statements.

This function should only be called from a connected C function.

SPIPlanPtr is declared as a pointer to an opaque struct type in spi.h. It is unwise to try to access its

contents directly, as that makes your code much more likely to break in future revisions of

PostgreSQL.

The name SPIPlanPtr is somewhat historical, since the data structure no longer necessarily contains an

execution plan.

SPI_PREPARE(3) PostgreSQL 15.4 Documentation SPI_PREPARE(3)

PostgreSQL 15.4 2023 SPI_PREPARE(3)

