
NAME
SSL_extension_supported, SSL_custom_ext_add_cb_ex, SSL_custom_ext_free_cb_ex,

SSL_custom_ext_parse_cb_ex, SSL_CTX_add_custom_ext, SSL_CTX_add_client_custom_ext,

SSL_CTX_add_server_custom_ext, custom_ext_add_cb, custom_ext_free_cb, custom_ext_parse_cb -

custom TLS extension handling

SYNOPSIS
#include <openssl/ssl.h>

typedef int (*SSL_custom_ext_add_cb_ex)(SSL *s, unsigned int ext_type,

unsigned int context,

const unsigned char **out,

size_t *outlen, X509 *x,

size_t chainidx, int *al,

void *add_arg);

typedef void (*SSL_custom_ext_free_cb_ex)(SSL *s, unsigned int ext_type,

unsigned int context,

const unsigned char *out,

void *add_arg);

typedef int (*SSL_custom_ext_parse_cb_ex)(SSL *s, unsigned int ext_type,

unsigned int context,

const unsigned char *in,

size_t inlen, X509 *x,

size_t chainidx, int *al,

void *parse_arg);

int SSL_CTX_add_custom_ext(SSL_CTX *ctx, unsigned int ext_type,

unsigned int context,

SSL_custom_ext_add_cb_ex add_cb,

SSL_custom_ext_free_cb_ex free_cb,

void *add_arg,

SSL_custom_ext_parse_cb_ex parse_cb,

void *parse_arg);

typedef int (*custom_ext_add_cb)(SSL *s, unsigned int ext_type,

const unsigned char **out,

size_t *outlen, int *al,

void *add_arg);

SSL_EXTENSION_SUPPORTED(3ossl) OpenSSL SSL_EXTENSION_SUPPORTED(3ossl)

3.0.11 2023-09-19 SSL_EXTENSION_SUPPORTED(3ossl)

typedef void (*custom_ext_free_cb)(SSL *s, unsigned int ext_type,

const unsigned char *out,

void *add_arg);

typedef int (*custom_ext_parse_cb)(SSL *s, unsigned int ext_type,

const unsigned char *in,

size_t inlen, int *al,

void *parse_arg);

int SSL_CTX_add_client_custom_ext(SSL_CTX *ctx, unsigned int ext_type,

custom_ext_add_cb add_cb,

custom_ext_free_cb free_cb, void *add_arg,

custom_ext_parse_cb parse_cb,

void *parse_arg);

int SSL_CTX_add_server_custom_ext(SSL_CTX *ctx, unsigned int ext_type,

custom_ext_add_cb add_cb,

custom_ext_free_cb free_cb, void *add_arg,

custom_ext_parse_cb parse_cb,

void *parse_arg);

int SSL_extension_supported(unsigned int ext_type);

DESCRIPTION
SSL_CTX_add_custom_ext() adds a custom extension for a TLS/DTLS client or server for all

supported protocol versions with extension type ext_type and callbacks add_cb, free_cb and parse_cb
(see the "EXTENSION CALLBACKS" section below). The context value determines which messages

and under what conditions the extension will be added/parsed (see the "EXTENSION CONTEXTS"

section below).

SSL_CTX_add_client_custom_ext() adds a custom extension for a TLS/DTLS client with extension

type ext_type and callbacks add_cb, free_cb and parse_cb. This function is similar to

SSL_CTX_add_custom_ext() except it only applies to clients, uses the older style of callbacks, and

implicitly sets the context value to:

SSL_EXT_TLS1_2_AND_BELOW_ONLY | SSL_EXT_CLIENT_HELLO

| SSL_EXT_TLS1_2_SERVER_HELLO | SSL_EXT_IGNORE_ON_RESUMPTION

SSL_CTX_add_server_custom_ext() adds a custom extension for a TLS/DTLS server with extension

type ext_type and callbacks add_cb, free_cb and parse_cb. This function is similar to

SSL_EXTENSION_SUPPORTED(3ossl) OpenSSL SSL_EXTENSION_SUPPORTED(3ossl)

3.0.11 2023-09-19 SSL_EXTENSION_SUPPORTED(3ossl)

SSL_CTX_add_custom_ext() except it only applies to servers, uses the older style of callbacks, and

implicitly sets the context value to the same as for SSL_CTX_add_client_custom_ext() above.

The ext_type parameter corresponds to the extension_type field of RFC5246 et al. It is not a NID. In all

cases the extension type must not be handled by OpenSSL internally or an error occurs.

SSL_extension_supported() returns 1 if the extension ext_type is handled internally by OpenSSL and 0

otherwise.

EXTENSION CALLBACKS
The callback add_cb is called to send custom extension data to be included in various TLS messages.

The ext_type parameter is set to the extension type which will be added and add_arg to the value set

when the extension handler was added. When using the new style callbacks the context parameter will

indicate which message is currently being constructed e.g. for the ClientHello it will be set to

SSL_EXT_CLIENT_HELLO.

If the application wishes to include the extension ext_type it should set *out to the extension data, set

*outlen to the length of the extension data and return 1.

If the add_cb does not wish to include the extension it must return 0.

If add_cb returns -1 a fatal handshake error occurs using the TLS alert value specified in *al.

When constructing the ClientHello, if add_cb is set to NULL a zero length extension is added for

ext_type. For all other messages if add_cb is set to NULL then no extension is added.

When constructing a Certificate message the callback will be called for each certificate in the message.

The x parameter will indicate the current certificate and the chainidx parameter will indicate the

position of the certificate in the message. The first certificate is always the end entity certificate and has

a chainidx value of 0. The certificates are in the order that they were received in the Certificate

message.

For all messages except the ServerHello and EncryptedExtensions every registered add_cb is always

called to see if the application wishes to add an extension (as long as all requirements of the specified

context are met).

For the ServerHello and EncryptedExtension messages every registered add_cb is called once if and

only if the requirements of the specified context are met and the corresponding extension was received

in the ClientHello. That is, if no corresponding extension was received in the ClientHello then add_cb
will not be called.

SSL_EXTENSION_SUPPORTED(3ossl) OpenSSL SSL_EXTENSION_SUPPORTED(3ossl)

3.0.11 2023-09-19 SSL_EXTENSION_SUPPORTED(3ossl)

If an extension is added (that is add_cb returns 1) free_cb is called (if it is set) with the value of out set

by the add callback. It can be used to free up any dynamic extension data set by add_cb. Since out is

constant (to permit use of constant data in add_cb) applications may need to cast away const to free the

data.

The callback parse_cb receives data for TLS extensions. The callback is only called if the extension is

present and relevant for the context (see "EXTENSION CONTEXTS" below).

The extension data consists of inlen bytes in the buffer in for the extension ext_type.

If the message being parsed is a TLSv1.3 compatible Certificate message then parse_cb will be called

for each certificate contained within the message. The x parameter will indicate the current certificate

and the chainidx parameter will indicate the position of the certificate in the message. The first

certificate is always the end entity certificate and has a chainidx value of 0.

If the parse_cb considers the extension data acceptable it must return 1. If it returns 0 or a negative

value a fatal handshake error occurs using the TLS alert value specified in *al.

The buffer in is a temporary internal buffer which will not be valid after the callback returns.

EXTENSION CONTEXTS
An extension context defines which messages and under which conditions an extension should be

added or expected. The context is built up by performing a bitwise OR of multiple pre-defined values

together. The valid context values are:

SSL_EXT_TLS_ONLY

The extension is only allowed in TLS

SSL_EXT_DTLS_ONLY

The extension is only allowed in DTLS

SSL_EXT_TLS_IMPLEMENTATION_ONLY

The extension is allowed in DTLS, but there is only a TLS implementation available (so it is

ignored in DTLS).

SSL_EXT_SSL3_ALLOWED

Extensions are not typically defined for SSLv3. Setting this value will allow the extension in

SSLv3. Applications will not typically need to use this.

SSL_EXT_TLS1_2_AND_BELOW_ONLY

SSL_EXTENSION_SUPPORTED(3ossl) OpenSSL SSL_EXTENSION_SUPPORTED(3ossl)

3.0.11 2023-09-19 SSL_EXTENSION_SUPPORTED(3ossl)

The extension is only defined for TLSv1.2/DTLSv1.2 and below. Servers will ignore this

extension if it is present in the ClientHello and TLSv1.3 is negotiated.

SSL_EXT_TLS1_3_ONLY

The extension is only defined for TLS1.3 and above. Servers will ignore this extension if it is

present in the ClientHello and TLSv1.2 or below is negotiated.

SSL_EXT_IGNORE_ON_RESUMPTION

The extension will be ignored during parsing if a previous session is being successfully resumed.

SSL_EXT_CLIENT_HELLO

The extension may be present in the ClientHello message.

SSL_EXT_TLS1_2_SERVER_HELLO

The extension may be present in a TLSv1.2 or below compatible ServerHello message.

SSL_EXT_TLS1_3_SERVER_HELLO

The extension may be present in a TLSv1.3 compatible ServerHello message.

SSL_EXT_TLS1_3_ENCRYPTED_EXTENSIONS

The extension may be present in an EncryptedExtensions message.

SSL_EXT_TLS1_3_HELLO_RETRY_REQUEST

The extension may be present in a HelloRetryRequest message.

SSL_EXT_TLS1_3_CERTIFICATE

The extension may be present in a TLSv1.3 compatible Certificate message.

SSL_EXT_TLS1_3_NEW_SESSION_TICKET

The extension may be present in a TLSv1.3 compatible NewSessionTicket message.

SSL_EXT_TLS1_3_CERTIFICATE_REQUEST

The extension may be present in a TLSv1.3 compatible CertificateRequest message.

The context must include at least one message value (otherwise the extension will never be used).

NOTES
The add_arg and parse_arg parameters can be set to arbitrary values which will be passed to the

corresponding callbacks. They can, for example, be used to store the extension data received in a

convenient structure or pass the extension data to be added or freed when adding extensions.

SSL_EXTENSION_SUPPORTED(3ossl) OpenSSL SSL_EXTENSION_SUPPORTED(3ossl)

3.0.11 2023-09-19 SSL_EXTENSION_SUPPORTED(3ossl)

If the same custom extension type is received multiple times a fatal decode_error alert is sent and the

handshake aborts. If a custom extension is received in a ServerHello/EncryptedExtensions message

which was not sent in the ClientHello a fatal unsupported_extension alert is sent and the handshake is

aborted. The ServerHello/EncryptedExtensions add_cb callback is only called if the corresponding

extension was received in the ClientHello. This is compliant with the TLS specifications. This

behaviour ensures that each callback is called at most once and that an application can never send

unsolicited extensions.

RETURN VALUES
SSL_CTX_add_custom_ext(), SSL_CTX_add_client_custom_ext() and

SSL_CTX_add_server_custom_ext() return 1 for success and 0 for failure. A failure can occur if an

attempt is made to add the same ext_type more than once, if an attempt is made to use an extension

type handled internally by OpenSSL or if an internal error occurs (for example a memory allocation

failure).

SSL_extension_supported() returns 1 if the extension ext_type is handled internally by OpenSSL and 0

otherwise.

SEE ALSO
ssl(7)

HISTORY
The SSL_CTX_add_custom_ext() function was added in OpenSSL 1.1.1.

COPYRIGHT
Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

SSL_EXTENSION_SUPPORTED(3ossl) OpenSSL SSL_EXTENSION_SUPPORTED(3ossl)

3.0.11 2023-09-19 SSL_EXTENSION_SUPPORTED(3ossl)

