
NAME
SSL_get_ex_data_X509_STORE_CTX_idx, SSL_CTX_set_verify, SSL_set_verify,

SSL_CTX_set_verify_depth, SSL_set_verify_depth, SSL_verify_cb,

SSL_verify_client_post_handshake, SSL_set_post_handshake_auth,

SSL_CTX_set_post_handshake_auth - set various SSL/TLS parameters for peer certificate verification

SYNOPSIS
#include <openssl/ssl.h>

typedef int (*SSL_verify_cb)(int preverify_ok, X509_STORE_CTX *x509_ctx);

void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, SSL_verify_cb verify_callback);

void SSL_set_verify(SSL *ssl, int mode, SSL_verify_cb verify_callback);

SSL_get_ex_data_X509_STORE_CTX_idx(void);

void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth);

void SSL_set_verify_depth(SSL *ssl, int depth);

int SSL_verify_client_post_handshake(SSL *ssl);

void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val);

void SSL_set_post_handshake_auth(SSL *ssl, int val);

DESCRIPTION
SSL_CTX_set_verify() sets the verification flags for ctx to be mode and specifies the verify_callback
function to be used. If no callback function shall be specified, the NULL pointer can be used for

verify_callback.

SSL_set_verify() sets the verification flags for ssl to be mode and specifies the verify_callback
function to be used. If no callback function shall be specified, the NULL pointer can be used for

verify_callback. In this case last verify_callback set specifically for this ssl remains. If no special

callback was set before, the default callback for the underlying ctx is used, that was valid at the time ssl
was created with SSL_new(3). Within the callback function,

SSL_get_ex_data_X509_STORE_CTX_idx can be called to get the data index of the current SSL

object that is doing the verification.

In client mode verify_callback may also call the SSL_set_retry_verify(3) function on the SSL object

set in the x509_store_ctx ex data (see SSL_get_ex_data_X509_STORE_CTX_idx(3)) and return 1.

This would be typically done in case the certificate verification was not yet able to succeed. This

makes the handshake suspend and return control to the calling application with

SSL_ERROR_WANT_RETRY_VERIFY. The application can for instance fetch further certificates or

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)



cert status information needed for the verification. Calling SSL_connect(3) again resumes the

connection attempt by retrying the server certificate verification step. This process may even be

repeated if need be. Note that the handshake may still be aborted if a subsequent invocation of the

callback (e.g., at a lower depth, or for a separate error condition) returns 0.

SSL_CTX_set_verify_depth() sets the maximum depth for the certificate chain verification that shall

be allowed for ctx.

SSL_set_verify_depth() sets the maximum depth for the certificate chain verification that shall be

allowed for ssl.

SSL_CTX_set_post_handshake_auth() and SSL_set_post_handshake_auth() enable the Post-

Handshake Authentication extension to be added to the ClientHello such that post-handshake

authentication can be requested by the server. If val is 0 then the extension is not sent, otherwise it is.

By default the extension is not sent. A certificate callback will need to be set via

SSL_CTX_set_client_cert_cb() if no certificate is provided at initialization.

SSL_verify_client_post_handshake() causes a CertificateRequest message to be sent by a server on the

given ssl connection. The SSL_VERIFY_PEER flag must be set; the

SSL_VERIFY_POST_HANDSHAKE flag is optional.

NOTES
The verification of certificates can be controlled by a set of logically or’ed mode flags:

SSL_VERIFY_NONE

Server mode: the server will not send a client certificate request to the client, so the client will not

send a certificate.

Client mode: if not using an anonymous cipher (by default disabled), the server will send a

certificate which will be checked. The result of the certificate verification process can be checked

after the TLS/SSL handshake using the SSL_get_verify_result(3) function. The handshake will be

continued regardless of the verification result.

SSL_VERIFY_PEER

Server mode: the server sends a client certificate request to the client. The certificate returned (if

any) is checked. If the verification process fails, the TLS/SSL handshake is immediately

terminated with an alert message containing the reason for the verification failure. The behaviour

can be controlled by the additional SSL_VERIFY_FAIL_IF_NO_PEER_CERT,

SSL_VERIFY_CLIENT_ONCE and SSL_VERIFY_POST_HANDSHAKE flags.

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)



Client mode: the server certificate is verified. If the verification process fails, the TLS/SSL

handshake is immediately terminated with an alert message containing the reason for the

verification failure. If no server certificate is sent, because an anonymous cipher is used,

SSL_VERIFY_PEER is ignored.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT

Server mode: if the client did not return a certificate, the TLS/SSL handshake is immediately

terminated with a "handshake failure" alert. This flag must be used together with

SSL_VERIFY_PEER.

Client mode: ignored (see BUGS)

SSL_VERIFY_CLIENT_ONCE

Server mode: only request a client certificate once during the connection. Do not ask for a client

certificate again during renegotiation or post-authentication if a certificate was requested during

the initial handshake. This flag must be used together with SSL_VERIFY_PEER.

Client mode: ignored (see BUGS)

SSL_VERIFY_POST_HANDSHAKE

Server mode: the server will not send a client certificate request during the initial handshake, but

will send the request via SSL_verify_client_post_handshake(). This allows the SSL_CTX or SSL

to be configured for post-handshake peer verification before the handshake occurs. This flag must

be used together with SSL_VERIFY_PEER. TLSv1.3 only; no effect on pre-TLSv1.3

connections.

Client mode: ignored (see BUGS)

If the mode is SSL_VERIFY_NONE none of the other flags may be set.

The actual verification procedure is performed either using the built-in verification procedure or using

another application provided verification function set with SSL_CTX_set_cert_verify_callback(3).

The following descriptions apply in the case of the built-in procedure. An application provided

procedure also has access to the verify depth information and the verify_callback() function, but the

way this information is used may be different.

SSL_CTX_set_verify_depth() and SSL_set_verify_depth() set a limit on the number of certificates

between the end-entity and trust-anchor certificates. Neither the end-entity nor the trust-anchor

certificates count against depth. If the certificate chain needed to reach a trusted issuer is longer than

depth+2, X509_V_ERR_CERT_CHAIN_TOO_LONG will be issued. The depth count is "level 0:peer

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)



certificate", "level 1: CA certificate", "level 2: higher level CA certificate", and so on. Setting the

maximum depth to 2 allows the levels 0, 1, 2 and 3 (0 being the end-entity and 3 the trust-anchor). The

default depth limit is 100, allowing for the peer certificate, at most 100 intermediate CA certificates

and a final trust anchor certificate.

The verify_callback function is used to control the behaviour when the SSL_VERIFY_PEER flag is

set. It must be supplied by the application and receives two arguments: preverify_ok indicates, whether

the verification of the certificate in question was passed (preverify_ok=1) or not (preverify_ok=0).

x509_ctx is a pointer to the complete context used for the certificate chain verification.

The certificate chain is checked starting with the deepest nesting level (the root CA certificate) and

worked upward to the peer’s certificate. At each level signatures and issuer attributes are checked.

Whenever a verification error is found, the error number is stored in x509_ctx and verify_callback is

called with preverify_ok=0. By applying X509_CTX_store_* functions verify_callback can locate the

certificate in question and perform additional steps (see EXAMPLES). If no error is found for a

certificate, verify_callback is called with preverify_ok=1 before advancing to the next level.

The return value of verify_callback controls the strategy of the further verification process. If

verify_callback returns 0, the verification process is immediately stopped with "verification failed"

state. If SSL_VERIFY_PEER is set, a verification failure alert is sent to the peer and the TLS/SSL

handshake is terminated. If verify_callback returns 1, the verification process is continued. If

verify_callback always returns 1, the TLS/SSL handshake will not be terminated with respect to

verification failures and the connection will be established. The calling process can however retrieve

the error code of the last verification error using SSL_get_verify_result(3) or by maintaining its own

error storage managed by verify_callback.

If no verify_callback is specified, the default callback will be used. Its return value is identical to

preverify_ok, so that any verification failure will lead to a termination of the TLS/SSL handshake with

an alert message, if SSL_VERIFY_PEER is set.

After calling SSL_set_post_handshake_auth(), the client will need to add a certificate or certificate

callback to its configuration before it can successfully authenticate. This must be called before

SSL_connect().

SSL_verify_client_post_handshake() requires that verify flags have been previously set, and that a

client sent the post-handshake authentication extension. When the client returns a certificate the verify

callback will be invoked. A write operation must take place for the Certificate Request to be sent to the

client, this can be done with SSL_do_handshake() or SSL_write_ex(). Only one certificate request

may be outstanding at any time.

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)



When post-handshake authentication occurs, a refreshed NewSessionTicket message is sent to the

client.

BUGS
In client mode, it is not checked whether the SSL_VERIFY_PEER flag is set, but whether any flags

other than SSL_VERIFY_NONE are set. This can lead to unexpected behaviour if

SSL_VERIFY_PEER and other flags are not used as required.

RETURN VALUES
The SSL*_set_verify*() functions do not provide diagnostic information.

The SSL_verify_client_post_handshake() function returns 1 if the request succeeded, and 0 if the

request failed. The error stack can be examined to determine the failure reason.

EXAMPLES
The following code sequence realizes an example verify_callback function that will always continue

the TLS/SSL handshake regardless of verification failure, if wished. The callback realizes a verification

depth limit with more informational output.

All verification errors are printed; information about the certificate chain is printed on request. The

example is realized for a server that does allow but not require client certificates.

The example makes use of the ex_data technique to store application data into/retrieve application data

from the SSL structure (see CRYPTO_get_ex_new_index(3),

SSL_get_ex_data_X509_STORE_CTX_idx(3)).

...

typedef struct {

int verbose_mode;

int verify_depth;

int always_continue;

} mydata_t;

int mydata_index;

...

static int verify_callback(int preverify_ok, X509_STORE_CTX *ctx)

{

char buf[256];

X509 *err_cert;

int err, depth;

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)



SSL *ssl;

mydata_t *mydata;

err_cert = X509_STORE_CTX_get_current_cert(ctx);

err = X509_STORE_CTX_get_error(ctx);

depth = X509_STORE_CTX_get_error_depth(ctx);

/*

* Retrieve the pointer to the SSL of the connection currently treated

* and the application specific data stored into the SSL object.

*/

ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx());

mydata = SSL_get_ex_data(ssl, mydata_index);

X509_NAME_oneline(X509_get_subject_name(err_cert), buf, 256);

/*

* Catch a too long certificate chain. The depth limit set using

* SSL_CTX_set_verify_depth() is by purpose set to "limit+1" so

* that whenever the "depth>verify_depth" condition is met, we

* have violated the limit and want to log this error condition.

* We must do it here, because the CHAIN_TOO_LONG error would not

* be found explicitly; only errors introduced by cutting off the

* additional certificates would be logged.

*/

if (depth > mydata->verify_depth) {

preverify_ok = 0;

err = X509_V_ERR_CERT_CHAIN_TOO_LONG;

X509_STORE_CTX_set_error(ctx, err);

}

if (!preverify_ok) {

printf("verify error:num=%d:%s:depth=%d:%s\n", err,

X509_verify_cert_error_string(err), depth, buf);

} else if (mydata->verbose_mode) {

printf("depth=%d:%s\n", depth, buf);

}

/*

* At this point, err contains the last verification error. We can use

* it for something special

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)



*/

if (!preverify_ok && (err == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT)) {

X509_NAME_oneline(X509_get_issuer_name(err_cert), buf, 256);

printf("issuer= %s\n", buf);

}

if (mydata->always_continue)

return 1;

else

return preverify_ok;

}

...

mydata_t mydata;

...

mydata_index = SSL_get_ex_new_index(0, "mydata index", NULL, NULL, NULL);

...

SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE,

verify_callback);

/*

* Let the verify_callback catch the verify_depth error so that we get

* an appropriate error in the logfile.

*/

SSL_CTX_set_verify_depth(verify_depth + 1);

/*

* Set up the SSL specific data into "mydata" and store it into th SSL

* structure.

*/

mydata.verify_depth = verify_depth; ...

SSL_set_ex_data(ssl, mydata_index, &mydata);

...

SSL_accept(ssl); /* check of success left out for clarity */

if (peer = SSL_get_peer_certificate(ssl)) {

if (SSL_get_verify_result(ssl) == X509_V_OK) {

/* The client sent a certificate which verified OK */

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)



}

}

SEE ALSO
ssl(7), SSL_new(3), SSL_CTX_get_verify_mode(3), SSL_get_verify_result(3),

SSL_CTX_load_verify_locations(3), SSL_get_peer_certificate(3),

SSL_CTX_set_cert_verify_callback(3), SSL_get_ex_data_X509_STORE_CTX_idx(3),

SSL_CTX_set_client_cert_cb(3), CRYPTO_get_ex_new_index(3)

HISTORY
The SSL_VERIFY_POST_HANDSHAKE option, and the SSL_verify_client_post_handshake() and

SSL_set_post_handshake_auth() functions were added in OpenSSL 1.1.1.

COPYRIGHT
Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

SSL_CTX_SET_VERIFY(3ossl) OpenSSL SSL_CTX_SET_VERIFY(3ossl)

3.0.11 2023-09-19 SSL_CTX_SET_VERIFY(3ossl)


