
NAME
SSL_CTX_set_tlsext_ticket_key_evp_cb, SSL_CTX_set_tlsext_ticket_key_cb - set a callback for

session ticket processing

SYNOPSIS
#include <openssl/tls1.h>

int SSL_CTX_set_tlsext_ticket_key_evp_cb(SSL_CTX sslctx,

int (*cb)(SSL *s, unsigned char key_name[16],

unsigned char iv[EVP_MAX_IV_LENGTH],

EVP_CIPHER_CTX *ctx, EVP_MAC_CTX *hctx, int enc));

The following function has been deprecated since OpenSSL 3.0, and can be hidden entirely by defining

OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros(7):

int SSL_CTX_set_tlsext_ticket_key_cb(SSL_CTX sslctx,

int (*cb)(SSL *s, unsigned char key_name[16],

unsigned char iv[EVP_MAX_IV_LENGTH],

EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc));

DESCRIPTION
SSL_CTX_set_tlsext_ticket_key_evp_cb() sets a callback function cb for handling session tickets for

the ssl context sslctx. Session tickets, defined in RFC5077 provide an enhanced session resumption

capability where the server implementation is not required to maintain per session state. It only applies

to TLS and there is no SSLv3 implementation.

The callback function cb will be called for every client instigated TLS session when session ticket

extension is presented in the TLS hello message. It is the responsibility of this function to create or

retrieve the cryptographic parameters and to maintain their state.

The OpenSSL library uses your callback function to help implement a common TLS ticket construction

state according to RFC5077 Section 4 such that per session state is unnecessary and a small set of

cryptographic variables needs to be maintained by the callback function implementation.

In order to reuse a session, a TLS client must send the a session ticket extension to the server. The

client can only send exactly one session ticket. The server, through the callback function, either agrees

to reuse the session ticket information or it starts a full TLS handshake to create a new session ticket.

Before the callback function is started ctx and hctx have been initialised with

EVP_CIPHER_CTX_reset(3) and EVP_MAC_CTX_new(3) respectively.

SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl) OpenSSL

3.0.11 2023-09-19 SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl)

For new sessions tickets, when the client doesn’t present a session ticket, or an attempted retrieval of

the ticket failed, or a renew option was indicated, the callback function will be called with enc equal to

1. The OpenSSL library expects that the function will set an arbitrary name, initialize iv, and set the

cipher context ctx and the hash context hctx.

The name is 16 characters long and is used as a key identifier.

The iv length is the length of the IV of the corresponding cipher. The maximum IV length is

EVP_MAX_IV_LENGTH bytes defined in <openssl/evp.h>.

The initialization vector iv should be a random value. The cipher context ctx should use the

initialisation vector iv. The cipher context can be set using EVP_EncryptInit_ex(3). The hmac context

and digest can be set using EVP_MAC_CTX_set_params(3) with the OSSL_MAC_PARAM_KEY
and OSSL_MAC_PARAM_DIGEST parameters respectively.

When the client presents a session ticket, the callback function with be called with enc set to 0

indicating that the cb function should retrieve a set of parameters. In this case name and iv have already

been parsed out of the session ticket. The OpenSSL library expects that the name will be used to

retrieve a cryptographic parameters and that the cryptographic context ctx will be set with the retrieved

parameters and the initialization vector iv. using a function like EVP_DecryptInit_ex(3). The key

material and digest for hctx need to be set using EVP_MAC_CTX_set_params(3) with the

OSSL_MAC_PARAM_KEY and OSSL_MAC_PARAM_DIGEST parameters respectively.

If the name is still valid but a renewal of the ticket is required the callback function should return 2.

The library will call the callback again with an argument of enc equal to 1 to set the new ticket.

The return value of the cb function is used by OpenSSL to determine what further processing will

occur. The following return values have meaning:

2 This indicates that the ctx and hctx have been set and the session can continue on those

parameters. Additionally it indicates that the session ticket is in a renewal period and should be

replaced. The OpenSSL library will call cb again with an enc argument of 1 to set the new ticket

(see RFC5077 3.3 paragraph 2).

1 This indicates that the ctx and hctx have been set and the session can continue on those

parameters.

0 This indicates that it was not possible to set/retrieve a session ticket and the SSL/TLS session will

continue by negotiating a set of cryptographic parameters or using the alternate SSL/TLS

resumption mechanism, session ids.

SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl) OpenSSL

3.0.11 2023-09-19 SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl)

If called with enc equal to 0 the library will call the cb again to get a new set of parameters.

less than 0

This indicates an error.

The SSL_CTX_set_tlsext_ticket_key_cb() function is identical to

SSL_CTX_set_tlsext_ticket_key_evp_cb() except that it takes a deprecated HMAC_CTX pointer

instead of an EVP_MAC_CTX one. Before this callback function is started hctx will have been

initialised with EVP_MAC_CTX_new(3) and the digest set with EVP_MAC_CTX_set_params(3).

The hctx key material can be set using HMAC_Init_ex(3).

NOTES
Session resumption shortcuts the TLS so that the client certificate negotiation don’t occur. It makes up

for this by storing client certificate an all other negotiated state information encrypted within the ticket.

In a resumed session the applications will have all this state information available exactly as if a full

negotiation had occurred.

If an attacker can obtain the key used to encrypt a session ticket, they can obtain the master secret for

any ticket using that key and decrypt any traffic using that session: even if the cipher suite supports

forward secrecy. As a result applications may wish to use multiple keys and avoid using long term keys

stored in files.

Applications can use longer keys to maintain a consistent level of security. For example if a cipher

suite uses 256 bit ciphers but only a 128 bit ticket key the overall security is only 128 bits because

breaking the ticket key will enable an attacker to obtain the session keys.

RETURN VALUES
Returns 1 to indicate the callback function was set and 0 otherwise.

EXAMPLES
Reference Implementation:

SSL_CTX_set_tlsext_ticket_key_evp_cb(SSL, ssl_tlsext_ticket_key_cb);

...

static int ssl_tlsext_ticket_key_cb(SSL *s, unsigned char key_name[16],

unsigned char *iv, EVP_CIPHER_CTX *ctx,

EVP_MAC_CTX *hctx, int enc)

{

OSSL_PARAM params[3];

SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl) OpenSSL

3.0.11 2023-09-19 SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl)

your_type_t *key; /* something that you need to implement */

if (enc) { /* create new session */

if (RAND_bytes(iv, EVP_MAX_IV_LENGTH) <= 0)

return -1; /* insufficient random */

key = currentkey(); /* something that you need to implement */

if (key == NULL) {

/* current key doesn’t exist or isn’t valid */

key = createkey(); /*

* Something that you need to implement.

* createkey needs to initialise a name,

* an aes_key, a hmac_key and optionally

* an expire time.

*/

if (key == NULL) /* key couldn’t be created */

return 0;

}

memcpy(key_name, key->name, 16);

if (EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, key->aes_key,

iv) == 0)

return -1; /* error in cipher initialisation */

params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,

key->hmac_key, 32);

params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,

"sha256", 0);

params[2] = OSSL_PARAM_construct_end();

if (EVP_MAC_CTX_set_params(hctx, params) == 0)

return -1; /* error in mac initialisation */

return 1;

} else { /* retrieve session */

time_t t = time(NULL);

key = findkey(key_name); /* something that you need to implement */

if (key == NULL || key->expire < t)

return 0;

SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl) OpenSSL

3.0.11 2023-09-19 SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl)

params[0] = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY,

key->hmac_key, 32);

params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,

"sha256", 0);

params[2] = OSSL_PARAM_construct_end();

if (EVP_MAC_CTX_set_params(hctx, params) == 0)

return -1; /* error in mac initialisation */

if (EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, key->aes_key,

iv) == 0)

return -1; /* error in cipher initialisation */

if (key->expire < t - RENEW_TIME) { /* RENEW_TIME: implement */

/*

* return 2 - This session will get a new ticket even though the

* current one is still valid.

*/

return 2;

}

return 1;

}

}

SEE ALSO
ssl(7), SSL_set_session(3), SSL_session_reused(3), SSL_CTX_add_session(3),

SSL_CTX_sess_number(3), SSL_CTX_sess_set_get_cb(3), SSL_CTX_set_session_id_context(3),

HISTORY
The SSL_CTX_set_tlsext_ticket_key_cb() function was deprecated in OpenSSL 3.0.

The SSL_CTX_set_tlsext_ticket_key_evp_cb() function was introduced in OpenSSL 3.0.

COPYRIGHT
Copyright 2014-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl) OpenSSL

3.0.11 2023-09-19 SSL_CTX_SET_TLSEXT_TICKET_KEY_CB(3ossl)

