SSL_CTX_NEW(3osd) OpenSSL SSL_CTX_NEW(30ss)

NAME
TLSv1l 2 method, TLSv1 2 server_method, TLSv1 2 client_ method, SSL_CTX new,
SSL_CTX_new_ex, SSL_CTX_up_ref, SSLv3 method, SSLv3_server_method,
SSLv3 client_method, TLSv1l method, TLSv1 server method, TLSv1 client_method,
TLSv1l 1 method, TLSv1l 1 server_method, TLSv1l 1 client method, TLS method,
TLS server_method, TLS client_method, SSLv23 method, SSLv23 server method,
SSLv23 client_method, DTLS method, DTLS server_method, DTLS client_ method,
DTLSv1_method, DTLSv1 server_method, DTLSv1_client_method, DTLSv1_2 method,
DTLSv1 2 server method, DTLSv1 2 client_method - create anew SSL_CTX object as framework
for TLS/SSL or DTLS enabled functions

SYNOPSIS
#include <openssl/ssl.h>

SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propg,
const SSL_ METHOD * method);

SSL_CTX *SSL_CTX_new(const SSL_ METHOD *method);

int SSL_CTX_up_ref(SSL_CTX *ctx);

const SSL_ METHOD *TLS method(void);
const SSL_ METHOD *TLS_server_method(void);
const SSL_ METHOD *TLS_client_method(void);

const SSL_ METHOD *SSLv23 _method(void);
const SSL_ METHOD *SSLv23 _server_method(void);
const SSL_ METHOD *SSLv23 client_method(void);

#ifndef OPENSSL_NO _SSL.3 METHOD

const SSL_ METHOD *SSLv3_method(void);

const SSL_ METHOD *SSLv3_server_method(void);
const SSL_ METHOD *SSLv3_client_method(void);
#endif

#ifndef OPENSSL_NO_TLS1_METHOD

const SSL_ METHOD *TLSv1l method(void);

const SSL. METHOD *TLSv1 server_method(void);
const SSL METHOD *TLSv1 client._ method(void);
#endif

#ifndef OPENSSL_NO TLS1 1 METHOD

3.0.11 2023-09-19 SSL_CTX_NEW(30ss)



SSL_CTX_NEW(3o0sd) OpenSSL SSL_CTX_NEW(30ss)

const SSL_ METHOD *TLSv1l 1 method(void);

const SSL_ METHOD *TLSv1l 1 server_method(void);
const SSL METHOD *TLSv1 1 client_method(void);
#endif

#ifndef OPENSSL_NO_TLS1 2 METHOD

const SSL_ METHOD *TLSv1l 2 method(void);

const SSL_ METHOD *TLSv1l 2 server_method(void);
const SSL_ METHOD *TLSv1 2 client_method(void);
#endif

const SSL_ METHOD *DTLS method(void);
const SSL_ METHOD *DTLS_server_method(void);
const SSL_ METHOD *DTLS_client_method(void);

#ifndef OPENSSL_NO_DTLS1L_METHOD

const SSL_ METHOD *DTLSv1 _method(void);

const SSL_ METHOD *DTLSv1 server_method(void);
const SSL. METHOD *DTLSv1 client_method(void);
#endif

#ifndef OPENSSL_NO_DTLS1 2 METHOD

const SSL_METHOD *DTLSv1_2_method(void);

const SSL_ METHOD *DTLSv1 2 server_method(void);
const SSL_ METHOD *DTLSv1 2 client_method(void);
#endif

DESCRIPTION
SSL_CTX_new_ex() createsanew SSL_CT X abject, which holds various configuration and data
relevant to SSL/TLS or DTLS session establishment. These are later inherited by the SSL object
representing an active session. The method parameter specifies whether the context will be used for
the client or server side or both - for details see the "NOTES' below. The library context libctx (see
OSSL_LIB_CTX(3)) isused to provide the cryptographic algorithms needed for the session. Any
cryptographic algorithms that are used by any SSL objects created from this SSL_CTX will be fetched
from the libctx using the property query string propg (see "ALGORITHM FETCHING" in crypto(7).
Either or both the libctx or propg parameters may be NULL.

SSL_CTX_new() doesthesame as SSL_CTX_new_ex() except that the default library context is used
and no property query string is specified.

3.0.11 2023-09-19 SSL_CTX_NEW(30ss)



SSL_CTX_NEW(3o0sd) OpenSSL SSL_CTX_NEW(30ss)

An SSL_CTX object is reference counted. Creating an SSL_CT X object for the first time increments
the reference count. Freeing the SSL_CTX (using SSL_CTX_free) decrementsit. When the reference
count drops to zero, any memory or resources allocated to the SSL_CT X object are freed.
SSL_CTX_up_ref() increments the reference count for an existing SSL_CTX structure.

An SSL_CTX object should not be changed after it is used to create any SSL objects or from multiple
threads concurrently, since the implementation does not provide serialization of access for these cases.

NOTES
On session establishment, by default, no peer credentials verification is done. This must be explicitly
requested, typically using SSL_CTX_set_verify(3). For verifying peer certificates many options can
be set using various functions such as SSL_CTX_load_verify locations(3) and
SSL_CTX_setl param(3). The X509 VERIFY_PARAM _set_purpose(3) function can be used, aso in
conjunction with SSL_CTX_get0_param(3), to set the intended purpose of the session. The default is
X509 PURPOSE SSL._SERVER ontheclient side and X509 PURPOSE _SSL. CLIENT on the server
side.

The SSL_CTX object uses method as the connection method. Three method variants are available: a
generic method (for either client or server use), a server-only method, and a client-only method.

The method parameter of SSL_CTX_new_ex() and SSL_CTX_new() can be one of the following:

TLS method(), TLS server_method(), TLS client_method()
These are the general-purpose version-flexible SSL/TL S methods. The actual protocol version
used will be negotiated to the highest version mutually supported by the client and the server. The
supported protocols are SSLv3, TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3. Applications should use
these methods, and avoid the version-specific methods described below, which are deprecated.

SSLv23 method(), SSLv23 server _method(), SSLv23 client_method()
These functions do not exist anymore, they have been renamed to TLS_method(),
TLS server_method() and TLS_client_method() respectively. Currently, the old function calls
are renamed to the corresponding new ones by preprocessor macros, to ensure that existing code
which uses the old function names still compiles. However, using the old function namesis
deprecated and new code should call the new functions instead.

TLSv1 2 method(), TLSv1 2 server_method(), TLSv1 2 client_method()
A TLS/SSL connection established with these methods will only understand the TLSv1.2
protocol. These methods are deprecated.

TLSv1l 1 method(), TLSv1l 1 server_method(), TLSv1 1 client_method()

3.0.11 2023-09-19 SSL_CTX_NEW(30ss)



SSL_CTX_NEW(3o0sd) OpenSSL SSL_CTX_NEW(30ss)

A TLS/SSL connection established with these methods will only understand the TLSv1.1
protocol. These methods are deprecated.

TLSv1l method(), TLSv1 server_method(), TLSv1 client_method()
A TLS/SSL connection established with these methods will only understand the TLSv1 protocol.
These methods are deprecated.

SSLv3 _method(), SSLv3_server _method(), SSLv3 client_method()
A TLS/SSL connection established with these methods will only understand the SSLv3 protocol.
The SSLv3 protocoal is deprecated and should not be used.

DTLS method(), DTLS server_method(), DTLS client_method()
These are the version-flexible DTLS methods. Currently supported protocolsare DTLS 1.0 and
DTLS1.2

DTLSv1 2 method(), DTLSv1 2 server_method(), DTLSv1 2 client_method()
These are the version-specific methods for DTLSv1.2. These methods are deprecated.

DTLSv1 method(), DTLSv1 server_method(), DTLSv1 client_method()
These are the version-specific methods for DTLSv1. These methods are deprecated.

SSL_CTX_new() initializesthe list of ciphers, the session cache setting, the callbacks, the keys and
certificates and the options to their default values.

TLS method(), TLS server_method(), TLS client_method(), DTLS method(),

DTLS server_method() and DTL S client_method() are the version-flexible methods. All other
methods only support one specific protocol version. Use the version-flexible methods instead of the
version specific methods.

If you want to limit the supported protocols for the version flexible methods you can use
SSL_CTX_set_min_proto_version(3), SSL_set_min_proto_version(3),
SSL_CTX_set_max_proto_version(3) and SSL_set_max_proto_version(3) functions. Using these
functionsit ispossibleto choosee.g. TLS server_method() and be able to negotiate with al possible
clients, but to only allow newer protocolslike TLS 1.0, TLS1.1, TLS1.20or TLS1.3.

Thelist of protocols available can also be limited using the SSL_OP_NO_SSL v3,
SSL_OP_NO_TLSv1,SSL_OP _NO TLSvl 1,SSL_OP_NO_TLSvl 3,SSL_OP_NO_TLSvl 2and
SSL_OP_NO_TLSv1 3optionsof the SSL_CTX_set_options(3) or SSL_set_options(3) functions, but
this approach is not recommended. Clients should avoid creating "holes" in the set of protocols they
support. When disabling a protocol, make sure that you also disable either all previous or all

3.0.11 2023-09-19 SSL_CTX_NEW(30ss)



SSL_CTX_NEW(3osd) OpenSSL SSL_CTX_NEW(30ss)

subseguent protocol versions. In clients, when a protocol version is disabled without disabling all
previous protocol versions, the effect isto also disable all subsequent protocol versions.

The SSLv3 protocol is deprecated and should generally not be used. Applications should typically use
SSL_CTX_set_min_proto_version(3) to set the minimum protocol to at least TLS1 VERSION.

RETURN VALUES
The following return values can occur:

NULL
The creation of anew SSL_CTX object failed. Check the error stack to find out the reason.

Pointer to an SSL_CTX object
The return value pointsto an allocated SSL_CTX object.

SSL_CTX_up_ref() returns 1 for success and O for failure.

SEE ALSO
SSL CTX_set_options(3), SSL_CTX_free(3), SSL_CTX_set_verify(3), SSL_CTX_setl param(3),
SSL_CTX_get0 param(3), SSL_connect(3), SSL_accept(3), SSL_CTX_set_min_proto_version(3),
sdl(7), SSL_set_connect_state(3)

HISTORY
Support for SSLv2 and the corresponding SSLv2_method(), SSLv2_server_method() and
SSLv2_client_method() functions where removed in OpenSSL 1.1.0.
SSLv23 method(), SSLv23 server_method() and SSLv23 client_method() were deprecated and the
preferred TLS method(), TLS server_method() and TLS client_method() functions were added in
OpenSSL 1.1.0.
All version-specific methods were deprecated in OpenSSL 1.1.0.

SSL_CTX_new_ex() was added in OpenSSL 3.0.

COPYRIGHT
Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). Y ou may not use thisfile except in

compliance with the License. Y ou can obtain acopy in the file LICENSE in the source distribution or
at <https://www.openssl.org/source/license.html>.

3.0.11 2023-09-19 SSL_CTX_NEW(30ss)



