
NAME
SSL_get_error - obtain result code for TLS/SSL I/O operation

SYNOPSIS
#include <openssl/ssl.h>

int SSL_get_error(const SSL *ssl, int ret);

DESCRIPTION
SSL_get_error() returns a result code (suitable for the C "switch" statement) for a preceding call to

SSL_connect(), SSL_accept(), SSL_do_handshake(), SSL_read_ex(), SSL_read(), SSL_peek_ex(),
SSL_peek(), SSL_shutdown(), SSL_write_ex() or SSL_write() on ssl. The value returned by that

TLS/SSL I/O function must be passed to SSL_get_error() in parameter ret.

In addition to ssl and ret, SSL_get_error() inspects the current thread’s OpenSSL error queue. Thus,

SSL_get_error() must be used in the same thread that performed the TLS/SSL I/O operation, and no

other OpenSSL function calls should appear in between. The current thread’s error queue must be

empty before the TLS/SSL I/O operation is attempted, or SSL_get_error() will not work reliably.

NOTES
Some TLS implementations do not send a close_notify alert on shutdown.

On an unexpected EOF, versions before OpenSSL 3.0 returned SSL_ERROR_SYSCALL, nothing was

added to the error stack, and errno was 0. Since OpenSSL 3.0 the returned error is SSL_ERROR_SSL
with a meaningful error on the error stack.

RETURN VALUES
The following return values can currently occur:

SSL_ERROR_NONE

The TLS/SSL I/O operation completed. This result code is returned if and only if ret > 0.

SSL_ERROR_ZERO_RETURN

The TLS/SSL peer has closed the connection for writing by sending the close_notify alert. No

more data can be read. Note that SSL_ERROR_ZERO_RETURN does not necessarily indicate

that the underlying transport has been closed.

This error can also appear when the option SSL_OP_IGNORE_UNEXPECTED_EOF is set. See

SSL_CTX_set_options(3) for more details.

SSL_GET_ERROR(3ossl) OpenSSL SSL_GET_ERROR(3ossl)

3.0.11 2023-09-19 SSL_GET_ERROR(3ossl)



SSL_ERROR_WANT_READ, SSL_ERROR_WANT_WRITE

The operation did not complete and can be retried later.

SSL_ERROR_WANT_READ is returned when the last operation was a read operation from a

nonblocking BIO. It means that not enough data was available at this time to complete the

operation. If at a later time the underlying BIO has data available for reading the same function

can be called again.

SSL_read() and SSL_read_ex() can also set SSL_ERROR_WANT_READ when there is still

unprocessed data available at either the SSL or the BIO layer, even for a blocking BIO. See

SSL_read(3) for more information.

SSL_ERROR_WANT_WRITE is returned when the last operation was a write to a nonblocking

BIO and it was unable to sent all data to the BIO. When the BIO is writable again, the same

function can be called again.

Note that the retry may again lead to an SSL_ERROR_WANT_READ or

SSL_ERROR_WANT_WRITE condition. There is no fixed upper limit for the number of

iterations that may be necessary until progress becomes visible at application protocol level.

It is safe to call SSL_read() or SSL_read_ex() when more data is available even when the call that

set this error was an SSL_write() or SSL_write_ex(). However, if the call was an SSL_write() or

SSL_write_ex(), it should be called again to continue sending the application data. If you get

SSL_ERROR_WANT_WRITE from SSL_write() or SSL_write_ex() then you should not do any

other operation that could trigger IO other than to repeat the previous SSL_write() call.

For socket BIOs (e.g. when SSL_set_fd() was used), select() or poll() on the underlying socket

can be used to find out when the TLS/SSL I/O function should be retried.

Caveat: Any TLS/SSL I/O function can lead to either of SSL_ERROR_WANT_READ and

SSL_ERROR_WANT_WRITE. In particular, SSL_read_ex(), SSL_read(), SSL_peek_ex(), or

SSL_peek() may want to write data and SSL_write() or SSL_write_ex() may want to read data.

This is mainly because TLS/SSL handshakes may occur at any time during the protocol (initiated

by either the client or the server); SSL_read_ex(), SSL_read(), SSL_peek_ex(), SSL_peek(),
SSL_write_ex(), and SSL_write() will handle any pending handshakes.

SSL_ERROR_WANT_CONNECT, SSL_ERROR_WANT_ACCEPT

The operation did not complete; the same TLS/SSL I/O function should be called again later. The

underlying BIO was not connected yet to the peer and the call would block in connect()/accept().
The SSL function should be called again when the connection is established. These messages can

SSL_GET_ERROR(3ossl) OpenSSL SSL_GET_ERROR(3ossl)

3.0.11 2023-09-19 SSL_GET_ERROR(3ossl)



only appear with a BIO_s_connect() or BIO_s_accept() BIO, respectively. In order to find out,

when the connection has been successfully established, on many platforms select() or poll() for

writing on the socket file descriptor can be used.

SSL_ERROR_WANT_X509_LOOKUP

The operation did not complete because an application callback set by

SSL_CTX_set_client_cert_cb() has asked to be called again. The TLS/SSL I/O function should

be called again later. Details depend on the application.

SSL_ERROR_WANT_ASYNC

The operation did not complete because an asynchronous engine is still processing data. This will

only occur if the mode has been set to SSL_MODE_ASYNC using SSL_CTX_set_mode(3) or

SSL_set_mode(3) and an asynchronous capable engine is being used. An application can

determine whether the engine has completed its processing using select() or poll() on the

asynchronous wait file descriptor. This file descriptor is available by calling

SSL_get_all_async_fds(3) or SSL_get_changed_async_fds(3). The TLS/SSL I/O function should

be called again later. The function must be called from the same thread that the original call was

made from.

SSL_ERROR_WANT_ASYNC_JOB

The asynchronous job could not be started because there were no async jobs available in the pool

(see ASYNC_init_thread(3)). This will only occur if the mode has been set to

SSL_MODE_ASYNC using SSL_CTX_set_mode(3) or SSL_set_mode(3) and a maximum limit

has been set on the async job pool through a call to ASYNC_init_thread(3). The application

should retry the operation after a currently executing asynchronous operation for the current

thread has completed.

SSL_ERROR_WANT_CLIENT_HELLO_CB

The operation did not complete because an application callback set by

SSL_CTX_set_client_hello_cb() has asked to be called again. The TLS/SSL I/O function should

be called again later. Details depend on the application.

SSL_ERROR_SYSCALL

Some non-recoverable, fatal I/O error occurred. The OpenSSL error queue may contain more

information on the error. For socket I/O on Unix systems, consult errno for details. If this error

occurs then no further I/O operations should be performed on the connection and SSL_shutdown()
must not be called.

This value can also be returned for other errors, check the error queue for details.

SSL_GET_ERROR(3ossl) OpenSSL SSL_GET_ERROR(3ossl)

3.0.11 2023-09-19 SSL_GET_ERROR(3ossl)



SSL_ERROR_SSL

A non-recoverable, fatal error in the SSL library occurred, usually a protocol error. The OpenSSL

error queue contains more information on the error. If this error occurs then no further I/O

operations should be performed on the connection and SSL_shutdown() must not be called.

SEE ALSO
ssl(7)

HISTORY
The SSL_ERROR_WANT_ASYNC error code was added in OpenSSL 1.1.0. The

SSL_ERROR_WANT_CLIENT_HELLO_CB error code was added in OpenSSL 1.1.1.

COPYRIGHT
Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

SSL_GET_ERROR(3ossl) OpenSSL SSL_GET_ERROR(3ossl)

3.0.11 2023-09-19 SSL_GET_ERROR(3ossl)


