
NAME
SSL_write_ex, SSL_write, SSL_sendfile - write bytes to a TLS/SSL connection

SYNOPSIS
#include <openssl/ssl.h>

ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags);

int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written);

int SSL_write(SSL *ssl, const void *buf, int num);

DESCRIPTION
SSL_write_ex() and SSL_write() write num bytes from the buffer buf into the specified ssl connection.

On success SSL_write_ex() will store the number of bytes written in *written.

SSL_sendfile() writes size bytes from offset offset in the file descriptor fd to the specified SSL

connection s. This function provides efficient zero-copy semantics. SSL_sendfile() is available only

when Kernel TLS is enabled, which can be checked by calling BIO_get_ktls_send(). It is provided

here to allow users to maintain the same interface. The meaning of flags is platform dependent.

Currently, under Linux it is ignored.

NOTES
In the paragraphs below a "write function" is defined as one of either SSL_write_ex(), or SSL_write().

If necessary, a write function will negotiate a TLS/SSL session, if not already explicitly performed by

SSL_connect(3) or SSL_accept(3). If the peer requests a re-negotiation, it will be performed

transparently during the write function operation. The behaviour of the write functions depends on the

underlying BIO.

For the transparent negotiation to succeed, the ssl must have been initialized to client or server mode.

This is being done by calling SSL_set_connect_state(3) or SSL_set_accept_state() before the first call

to a write function.

If the underlying BIO is blocking, the write functions will only return, once the write operation has

been finished or an error occurred.

If the underlying BIO is nonblocking the write functions will also return when the underlying BIO

could not satisfy the needs of the function to continue the operation. In this case a call to

SSL_get_error(3) with the return value of the write function will yield SSL_ERROR_WANT_READ
or SSL_ERROR_WANT_WRITE. As at any time a re-negotiation is possible, a call to a write function

can also cause read operations! The calling process then must repeat the call after taking appropriate

SSL_WRITE(3ossl) OpenSSL SSL_WRITE(3ossl)

3.0.11 2023-09-19 SSL_WRITE(3ossl)



action to satisfy the needs of the write function. The action depends on the underlying BIO. When

using a nonblocking socket, nothing is to be done, but select() can be used to check for the required

condition. When using a buffering BIO, like a BIO pair, data must be written into or retrieved out of

the BIO before being able to continue.

The write functions will only return with success when the complete contents of buf of length num has

been written. This default behaviour can be changed with the

SSL_MODE_ENABLE_PARTIAL_WRITE option of SSL_CTX_set_mode(3). When this flag is set

the write functions will also return with success when a partial write has been successfully completed.

In this case the write function operation is considered completed. The bytes are sent and a new write

call with a new buffer (with the already sent bytes removed) must be started. A partial write is

performed with the size of a message block, which is 16kB.

WARNINGS
When a write function call has to be repeated because SSL_get_error(3) returned

SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE, it must be repeated with the same

arguments. The data that was passed might have been partially processed. When

SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER was set using SSL_CTX_set_mode(3) the

pointer can be different, but the data and length should still be the same.

You should not call SSL_write() with num=0, it will return an error. SSL_write_ex() can be called

with num=0, but will not send application data to the peer.

RETURN VALUES
SSL_write_ex() will return 1 for success or 0 for failure. Success means that all requested application

data bytes have been written to the SSL connection or, if SSL_MODE_ENABLE_PARTIAL_WRITE

is in use, at least 1 application data byte has been written to the SSL connection. Failure means that not

all the requested bytes have been written yet (if SSL_MODE_ENABLE_PARTIAL_WRITE is not in

use) or no bytes could be written to the SSL connection (if

SSL_MODE_ENABLE_PARTIAL_WRITE is in use). Failures can be retryable (e.g. the network

write buffer has temporarily filled up) or non-retryable (e.g. a fatal network error). In the event of a

failure call SSL_get_error(3) to find out the reason which indicates whether the call is retryable or not.

For SSL_write() the following return values can occur:

> 0 The write operation was successful, the return value is the number of bytes actually written to the

TLS/SSL connection.

<= 0

The write operation was not successful, because either the connection was closed, an error

SSL_WRITE(3ossl) OpenSSL SSL_WRITE(3ossl)

3.0.11 2023-09-19 SSL_WRITE(3ossl)



occurred or action must be taken by the calling process. Call SSL_get_error() with the return

value ret to find out the reason.

Old documentation indicated a difference between 0 and -1, and that -1 was retryable. You should

instead call SSL_get_error() to find out if it’s retryable.

For SSL_sendfile(), the following return values can occur:

>= 0

The write operation was successful, the return value is the number of bytes of the file written to

the TLS/SSL connection. The return value can be less than size for a partial write.

< 0 The write operation was not successful, because either the connection was closed, an error

occurred or action must be taken by the calling process. Call SSL_get_error() with the return

value to find out the reason.

SEE ALSO
SSL_get_error(3), SSL_read_ex(3), SSL_read(3) SSL_CTX_set_mode(3), SSL_CTX_new(3),

SSL_connect(3), SSL_accept(3) SSL_set_connect_state(3), BIO_ctrl(3), ssl(7), bio(7)

HISTORY
The SSL_write_ex() function was added in OpenSSL 1.1.1. The SSL_sendfile() function was added in

OpenSSL 3.0.

COPYRIGHT
Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

SSL_WRITE(3ossl) OpenSSL SSL_WRITE(3ossl)

3.0.11 2023-09-19 SSL_WRITE(3ossl)


