
NAME
TIFFRGBAImageOK, TIFFRGBAImageBegin, TIFFRGBAImageGet, TIFFRGBAImageEnd - read

and decode an image into a raster

SYNOPSIS
#include <tiffio.h>

typedef unsigned char TIFFRGBValue; typedef struct _TIFFRGBAImage TIFFRGBAImage;

int TIFFRGBAImageOK(TIFF *tif, char emsg[1024])
int TIFFRGBAImageBegin(TIFFRGBAImage *img, TIFF* tif, int stopOnError, char emsg[1024])
int TIFFRGBAImageGet(TIFFRGBAImage *img, uint32_t* raster, uint32_t width , uint32_t height)
void TIFFRGBAImageEnd(TIFFRGBAImage *img)

DESCRIPTION
The routines described here provide a high-level interface through which TIFF images may be read into

memory. Images may be strip- or tile-based and have a variety of different characteristics: bits/sample,

samples/pixel, photometric, etc. Decoding state is encapsulated in a TIFFRGBAImage structure

making it possible to capture state for multiple images and quickly switch between them. The target

raster format can be customized to a particular application’s needs by installing custom routines that

manipulate image data according to application requirements.

The default usage for these routines is: check if an image can be processed using

TIFFRGBAImageOK, construct a decoder state block using TIFFRGBAImageBegin, read and decode

an image into a target raster using TIFFRGBAImageGet, and then release resources using

TIFFRGBAImageEnd. TIFFRGBAImageGet can be called multiple times to decode an image using

different state parameters. If multiple images are to be displayed and there is not enough space for

each of the decoded rasters, multiple state blocks can be managed and then calls can be made to

TIFFRGBAImageGet as needed to display an image.

The generated raster is assumed to be an array of width times height 32-bit entries, where width must

be less than or equal to the width of the image (height may be any non-zero size). If the raster

dimensions are smaller than the image, the image data is cropped to the raster bounds. If the raster

height is greater than that of the image, then the image data are placed in the lower part of the raster.

(Note that the raster is assume to be organized such that the pixel at location (x,y) is raster[y*width+x];

with the raster origin in the lower-left hand corner.)

Raster pixels are 8-bit packed red, green, blue, alpha samples. The macros TIFFGetR, TIFFGetG,

TIFFGetB, and TIFFGetA should be used to access individual samples. Images without Associated

Alpha matting information have a constant Alpha of 1.0 (255).

TIFFRGBAImage(3TIFF) TIFFRGBAImage(3TIFF)

libtiff October 29, 2004 TIFFRGBAImage(3TIFF)



TIFFRGBAImageGet converts non-8-bit images by scaling sample values. Palette, grayscale, bilevel,

CMYK, and YCbCr images are converted to RGB transparently. Raster pixels are returned

uncorrected by any colorimetry information present in the directory.

The parameter stopOnError specifies how to act if an error is encountered while reading the image. If

stopOnError is non-zero, then an error will terminate the operation; otherwise TIFFRGBAImageGet

will continue processing data until all the possible data in the image have been requested.

ALTERNATE RASTER FORMATS
To use the core support for reading and processing TIFF images, but write the resulting raster data in a

different format one need only override the ‘‘put methods’’ used to store raster data. These methods

are are defined in the TIFFRGBAImage structure and initially setup by TIFFRGBAImageBegin to

point to routines that pack raster data in the default ABGR pixel format. Two different routines are

used according to the physical organization of the image data in the file: PlanarConfiguration=1

(packed samples), and PlanarConfiguration=2 (separated samples). Note that this mechanism can be

used to transform the data before storing it in the raster. For example one can convert data to colormap

indices for display on a colormap display.

SIMULTANEOUS RASTER STORE AND DISPLAY
It is simple to display an image as it is being read into memory by overriding the put methods as

described above for supporting alternate raster formats. Simply keep a reference to the default put

methods setup by TIFFRGBAImageBegin and then invoke them before or after each display operation.

For example, the tiffgt(1) utility uses the following put method to update the display as the raster is

being filled:

static void

putContigAndDraw(TIFFRGBAImage* img, uint32_t* raster,

uint32_t x, uint32_t y, uint32_t w, uint32_t h,

int32_t fromskew, int32_t toskew,

unsigned char* cp)

{

(*putContig)(img, raster, x, y, w, h, fromskew, toskew, cp);

if (x+w == width) {

w = width;

if (img->orientation == ORIENTATION_TOPLEFT)

lrectwrite(0, y-(h-1), w-1, y, raster-x-(h-1)*w);

else

lrectwrite(0, y, w-1, y+h-1, raster);

}

}

TIFFRGBAImage(3TIFF) TIFFRGBAImage(3TIFF)

libtiff October 29, 2004 TIFFRGBAImage(3TIFF)



(the original routine provided by the library is saved in the variable putContig.)

SUPPORTING ADDITIONAL TIFF FORMATS
The TIFFRGBAImage routines support the most commonly encountered flavors of TIFF. It is possible

to extend this support by overriding the ‘‘get method’’ invoked by TIFFRGBAImageGet to read TIFF

image data. Details of doing this are a bit involved, it is best to make a copy of an existing get method

and modify it to suit the needs of an application.

NOTES
Samples must be either 1, 2, 4, 8, or 16 bits. Colorimetric samples/pixel must be either 1, 3, or 4 (i.e.

SamplesPerPixel minus ExtraSamples).

Palette image colormaps that appear to be incorrectly written as 8-bit values are automatically scaled to

16-bits.

RETURN VALUES
All routines return 1 if the operation was successful. Otherwise, 0 is returned if an error was

encountered and stopOnError is zero.

DIAGNOSTICS
All error messages are directed to the TIFFError(3TIFF) routine.

Sorry, can not handle %d-bit pictures. The image had BitsPerSample other than 1, 2, 4, 8, or 16.

Sorry, can not handle %d-channel images. The image had SamplesPerPixel other than 1, 3, or 4.

Missing needed "PhotometricInterpretation" tag. The image did not have a tag that describes how to

display the data.

No "PhotometricInterpretation" tag, assuming RGB. The image was missing a tag that describes how

to display it, but because it has 3 or 4 samples/pixel, it is assumed to be RGB.

No "PhotometricInterpretation" tag, assuming min-is-black. The image was missing a tag that

describes how to display it, but because it has 1 sample/pixel, it is assumed to be a grayscale or bilevel

image.

No space for photometric conversion table. There was insufficient memory for a table used to convert

image samples to 8-bit RGB.

Missing required "Colormap" tag. A Palette image did not have a required Colormap tag.

TIFFRGBAImage(3TIFF) TIFFRGBAImage(3TIFF)

libtiff October 29, 2004 TIFFRGBAImage(3TIFF)



No space for tile buffer. There was insufficient memory to allocate an i/o buffer.

No space for strip buffer. There was insufficient memory to allocate an i/o buffer.

Can not handle format. The image has a format (combination of BitsPerSample, SamplesPerPixel, and

PhotometricInterpretation) that can not be handled.

No space for B&W mapping table. There was insufficient memory to allocate a table used to map

grayscale data to RGB.

No space for Palette mapping table. There was insufficient memory to allocate a table used to map

data to 8-bit RGB.

SEE ALSO
TIFFOpen(3TIFF), TIFFReadRGBAImage(3TIFF), TIFFReadRGBAImageOriented(3TIFF),

TIFFReadRGBAStrip(3TIFF), TIFFReadRGBATile(3TIFF), libtiff(3TIFF)

Libtiff library home page: http://www.simplesystems.org/libtiff/

TIFFRGBAImage(3TIFF) TIFFRGBAImage(3TIFF)

libtiff October 29, 2004 TIFFRGBAImage(3TIFF)


