
NAME
VGLBitmapAllocateBits, VGLBitmapCopy, VGLBitmapCreate, VGLBitmapDestroy,

VGLBitmapPutChar, VGLBitmapString, VGLBlankDisplay, VGLBox, VGLCheckSwitch, VGLClear,

VGLEllipse, VGLEnd, VGLFilledBox, VGLFilledEllipse, VGLGetXY, VGLInit, VGLLine,

VGLKeyboardInit, VGLKeyboardEnd, VGLKeyboardGetCh, VGLMouseInit, VGLMouseMode,

VGLMouseSetImage, VGLMouseSetStdImage, VGLMouseStatus, VGLPanScreen, VGLSetBorder,

VGLSetPalette, VGLSetPaletteIndex, VGLSetVScreenSize, VGLSetXY, VGLTextSetFontFile - Video

Graphics Library functions

LIBRARY
Video Graphics Library (libvgl, -lvgl)

SYNOPSIS
#include <sys/fbio.h>
#include <sys/consio.h>
#include <sys/kbio.h>
#include <vgl.h>

int

VGLInit(int mode);

void

VGLEnd(void);

void

VGLCheckSwitch(void);

int

VGLTextSetFontFile(char *filename);

int

VGLKeyboardInit(int code);

void

VGLKeyboardEnd(void);

int

VGLKeyboardGetCh(void);

int

VGL(3) FreeBSD Library Functions Manual VGL(3)

FreeBSD 14.0-RELEASE-p11 February 25, 2012 FreeBSD 14.0-RELEASE-p11



VGLMouseInit(int mode);

void

VGLMouseMode(int mode);

int

VGLMouseStatus(int *x, int *y, char *buttons);

void

VGLMouseSetImage(VGLBitmap *AndMask, VGLBitmap *OrMask);

void

VGLMouseSetStdImage(void);

u_long

VGLGetXY(VGLBitmap *object, int x, int y);

void

VGLSetXY(VGLBitmap *object, int x, int y, u_long color);

void

VGLLine(VGLBitmap *object, int x1, int y1, int x2, int y2, u_long color);

void

VGLBox(VGLBitmap *object, int x1, int y1, int x2, int y2, u_long color);

void

VGLFilledBox(VGLBitmap *object, int x1, int y1, int x2, int y2, u_long color);

void

VGLEllipse(VGLBitmap *object, int xc, int yc, int a, int b, u_long color);

void

VGLFilledEllipse(VGLBitmap *object, int xc, int yc, int a, int b, u_long color);

VGLBitmap *

VGLBitmapCreate(int type, int xsize, int ysize, byte *bits);

void

VGLBitmapDestroy(VGLBitmap *object);

VGL(3) FreeBSD Library Functions Manual VGL(3)

FreeBSD 14.0-RELEASE-p11 February 25, 2012 FreeBSD 14.0-RELEASE-p11



int

VGLBitmapAllocateBits(VGLBitmap *object);

int

VGLBitmapCopy(VGLBitmap *src, int srcx, int srcy, VGLBitmap *dst, int dstx, int dsty, int width,

int hight);

void

VGLBitmapPutChar(VGLBitmap *Object, int x, int y, byte ch, u_long fgcol, u_long bgcol, int fill,

int dir);

void

VGLBitmapString(VGLBitmap *Object, int x, int y, char *str, u_long fgcol, u_long bgcol, int fill,

int dir);

void

VGLClear(VGLBitmap *object, u_long color);

void

VGLSetPalette(byte *red, byte *green, byte *blue);

void

VGLSetPaletteIndex(byte color, byte red, byte green, byte blue);

void

VGLSetBorder(byte color);

int

VGLSetVScreenSize(VGLBitmap *object, int vxsize, int vysize);

int

VGLPanScreen(VGLBitmap *object, int x, int y);

void

VGLBlankDisplay(int blank);

DESCRIPTION
Libvgl is a library that enables the programmer access to the graphics modes supported by the console

driver (syscons). The library takes care of programming the actual video hardware, and provides a

number of simple functions to do various graphic operations. There is also support for a mouse via the

VGL(3) FreeBSD Library Functions Manual VGL(3)

FreeBSD 14.0-RELEASE-p11 February 25, 2012 FreeBSD 14.0-RELEASE-p11



standard mouse system in FreeBSD, see mouse(4), including the ability to transparently have a mouse

pointer superimposed on the graphic image currently being worked on. The library takes care of screen

switching by storing the current image in memory before switching to another virtual console, and

restoring when the user switches back. This allows several graphic applications at once, but on different

virtual consoles.

Below is a short description of the various functions:

VGLInit() initialize the library and set up the graphic mode mode.

VGLEnd() terminate graphic mode, and restore the screenmode that was active before VGLInit() was

called.

VGLCheckSwitch() if the program goes into longer periods of processing without doing any graphics

output, calling this function occasionally will allow the system to switch screens.

VGLTextSetFontFile() instruct the char/string functions to use the font in file filename instead of the

builtin font.

VGLKeyboardInit() set up the keyboard in the "raw" I/O mode and specify the key code to be used.

code must be VGL_XLATEKEYS, VGL_CODEKEYS, or VGL_RAWKEYS. When

VGL_XLATEKEYS is specified, the keyboard translates the raw keyboard scan code into a character

code. If VGL_RAWKEYS is used, the raw keyboard scan code is read as is. VGL_CODEKEYS is the

intermediate key code; each key is assigned a unique code whereas more than one raw scan code may be

generated when a key is pressed.

VGLKeyboardEnd() when you have finished using the keyboard, call this function.

VGLKeyboardGetCh() read one byte from the keyboard. As the keyboard I/O is in the "raw" input

mode, the function will not block even if there is no input data, and returns 0.

VGLMouseInit() initialize the mouse. The optional on-screen mouse pointer is shown if the argument is

VGL_MOUSESHOW.

VGLMouseMode() either shows the mouse pointer if the argument is VGL_MOUSESHOW, or hides

the mouse pointer if the argument is VGL_MOUSEHIDE.

VGLMouseStatus() returns the current mouse pointer coordinates and button state in x, y, buttons. The

return value reflects if the mouse pointer is currently shown on screen or not.

VGL(3) FreeBSD Library Functions Manual VGL(3)

FreeBSD 14.0-RELEASE-p11 February 25, 2012 FreeBSD 14.0-RELEASE-p11



VGLMouseSetImage() with this function it is possible to change the image of the mouse pointer on

screen.

VGLMouseSetStdImage() this function restores the mouse pointer to the standard arrow.

VGLGetXY() retrieves the color of the pixel located at x, y, coordinates of the object argument, and

returns it as a u_long value.

VGLSetXY() sets the color of the pixel located at x, y, coordinates of the object argument to color

u_long value.

VGLLine() draw a line from x1, y1 to x2, y2 in color color.

VGLBox() draw a box with upper left hand corner at x1, y1 and lower right hand corner at x2, y2 in

color color.

VGLFilledBox() draw a filled (solid) box with upper left hand corner at x1, y1 and lower right hand

corner at x2, y2 in color color.

VGLEllipse() draw an ellipse centered at xc, yc make it a pixels wide, and b pixels high in color color.

VGLFilledEllipse() draw a filled (solid) ellipse centered at xc, yc make it a pixels wide, and b pixels

high in color color.

VGLBitmapCreate() create a bitmap object and initialize it with the specified values and bit data. type

must be MEMBUF for the in-memory bitmap. bits may be NULL so that bitmap data may be associated

later.

There also is a macro, VGLBITMAP_INITIALIZER(type, xsize, ysize, bits) to initialize a statically

declared bitmap object.

VGLBitmapDestroy() free the bitmap data and the bitmap object.

VGLBitmapAllocateBits() allocate a bit data buffer for the specified object.

VGLBitmapCopy() copy a rectangle of pixels from bitmap src upper left hand corner at srcx, srcy to

bitmap dst at dstx, dsty of the size width, height.

VGLBitmapPutChar() write the character ch at position x, y in foreground color fgcol. If fill is != 0, use

the color bgcol as background otherwise the background is transparent. The character is drawn in the

VGL(3) FreeBSD Library Functions Manual VGL(3)

FreeBSD 14.0-RELEASE-p11 February 25, 2012 FreeBSD 14.0-RELEASE-p11



direction specified by the argument dir.

VGLBitmapString() write the string str at position x, y in foreground color fgcol. If fill is != 0, use the

color bgcol as background otherwise the background is transparent. The string is drawn in the direction

specified by the argument dir.

VGLClear() clears the entire bitmap to color color.

VGLSetPalette() this function sets the palette used, the arguments red, green, blue should point to byte

arrays of 256 positions each.

VGLSetPaletteIndex() set the palette index color to the specified RGB value.

VGLSetBorder() set the border color to color color.

VGLSetVScreenSize() change the virtual screen size of the display. Note that this function must be

called when our vty is in the foreground. And object must be VGLDisplay. Passing an in-memory

bitmap to this function results in error.

The desired virtual screen width may not be achievable because of the video card hardware. In such

case the video driver (and underlying video BIOS) may choose the next largest values. Always examine

object->VXsize and VYsize after calling this function, in order to see how the virtual screen is actually

set up.

In order to set up the largest possible virtual screen, you may call this function with arbitrary large

values.

VGLSetVScreenSize(10000, 10000);

VGLPanScreen() change the origin of the displayed screen in the virtual screen. Note that this function

must be called when our vty is in the foreground. object must be VGLDisplay. Passing an in-memory

bitmap to this function results in error.

VGLBlankDisplay() blank the display if the argument blank != 0. This can be done to shut off the

screen during display updates that the user should first see when it is done.

Program termination and signal processing
It is important to call VGLEnd() before terminating the program. Care must be taken if you install

signal handlers and try to call VGLEnd() and exit(3) to end the program. If a signal is caught while the

program is inside libvgl functions, VGLEnd() may not be able to properly restore the graphics hardware.

VGL(3) FreeBSD Library Functions Manual VGL(3)

FreeBSD 14.0-RELEASE-p11 February 25, 2012 FreeBSD 14.0-RELEASE-p11



The recommended way to handle signals and program termination is to have a flag to indicate signal’s

delivery. Your signal handlers set this flag but do not terminate the program immediately. The main

part of the program checks the flag to see if it is supposed to terminate, and calls VGLEnd() and exit(3)

if the flag is set.

Note that VGLInit() installs its internal signal handlers for SIGINT, SIGTERM, SIGSEGV, and

SIGBUS, and terminates the program at appropriate time, after one of these signals is caught. If you

want to have your own signal handlers for these signals, install handlers after VGLInit().

SIGUSR1 and SIGUSR2 are internally used by libvgl to control screen switching and the mouse pointer,

and are not available to libvgl client programs.

HISTORY
The vgl library appeared in FreeBSD 3.0.

AUTHORS
S/oren Schmidt <sos@FreeBSD.org>

VGL(3) FreeBSD Library Functions Manual VGL(3)

FreeBSD 14.0-RELEASE-p11 February 25, 2012 FreeBSD 14.0-RELEASE-p11


