X500V3_GET_EXT_BY_NID(30sd) OpenSSL X500V3_GET_EXT_BY_NID(30sd)

NAME
X509v3 get ext count, X509v3 get ext, X509v3 get ext by NID, X509v3 get ext by OBJ,
X509v3 get_ext by critical, X509v3_delete ext, X509v3 add ext, X509 get ext count,
X509 get_ext, X509 get ext by NID, X509 get ext by OBJ, X509 get ext by critical,
X509 _delete ext, X509 _add_ext, X509 CRL_get_ext_count, X509 _CRL_get_ext,
X509 CRL_get _ext_by NID, X509 CRL_get_ext by OBJ, X509 CRL_get ext by critical,
X509 CRL_delete ext, X509 CRL_add ext, X509 REVOKED_get_ext_count,
X509 REVOKED get_ext, X509 REVOKED_get ext_by NID,
X509 REVOKED get ext by OBJ, X509 REVOKED get ext by critical,
X509 REVOKED delete ext, X509 REVOKED add ext - extension stack utility functions

SYNOPSIS
#include <openssl/x509.h>

int X509v3 _get_ext_count(const STACK_OF(X509 EXTENSION) *x);
X509 EXTENSION *X509v3_get _ext(const STACK _OF(X509_EXTENSION) *x, int loc);

int X509v3_get_ext by NID(const STACK_OF(X509_EXTENSION) *x,

int nid, int lastpos);
int X509v3_get_ext by OBJ(const STACK_OF(X509_EXTENSION) *x,

const ASN1_OBJECT *obj, int lastpos);
int X509v3_get_ext_by critical(const STACK_OF(X509_EXTENSION) *x,

int crit, int lastpos);
X509 EXTENSION *X509v3_delete ext(STACK_OF(X509_EXTENSION) *x, int loc);
STACK_OF(X509_EXTENSION) *X509v3_add ext(STACK_OF(X509_EXTENSION) **x,
X509 _EXTENSION *ex, int loc);

int X509 _get_ext count(const X509 *x);

X509 _EXTENSION *X509_get_ext(const X509 *x, int 10C);

int X509_get_ext_by NID(const X509 *x, int nid, int lastpos);

int X509 _get_ext_ by OBJ(const X509 *x, const ASN1 _OBJECT *obj, int lastpos);
int X509 _get ext by critical(const X509 *X, int crit, int lastpos);

X509 EXTENSION * X509 delete ext(X509 *x, int 1oc);

int X509 add ext(X509 *x, X509 EXTENSION *ex, int loc);

int X509 CRL_get ext count(const X509 CRL *X);

X509 _EXTENSION *X509_CRL_get_ext(const X509 _CRL *X, int loc);

int X509_CRL_get_ext_by NID(const X509 _CRL *x, int nid, int lastpos);

int X509_CRL_get_ext_by OBJ(const X509 _CRL *x, const ASN1_OBJECT *abj,
int lastpos);

3.0.11 2023-09-19 X500V3_GET_EXT_BY_NID(30sd)

X500V3_GET_EXT_BY_NID(30sd) OpenSSL X500V3_GET_EXT_BY_NID(30sd)

int X509 CRL_get ext by critical(const X509 CRL *x, int crit, int lastpos);
X509 EXTENSION *X509 CRL_delete_ext(X509 _CRL *x, int loc);
int X509_CRL_add_ext(X509_CRL *x, X509 EXTENSION *ex, int loc);

int X509 REVOKED_get_ext_count(const X509 _REVOKED *X);

X509 EXTENSION *X509 REVOKED get_ext(const X509 REVOKED *x, int loc);

int X509 REVOKED_get ext by NID(const X509 REVOKED *X, int nid, int lastpos);

int X509 REVOKED_get ext by OBJ(const X509 REVOKED *x, const ASN1_OBJECT *obj,
int lastpos);

int X509 REVOKED get ext by critical(const X509 REVOKED *X, int crit, int lastpos);

X509 _EXTENSION * X509 REVOKED_delete_ext(X509 REVOKED *, int loc);

int X509 REVOKED_add_ext(X509_REVOKED *x, X509 _EXTENSION *eX, int 10c);

DESCRIPTION

X509v3_get_ext_count() retrieves the number of extensionsin x.

X509v3 _get_ext() retrieves extension loc from x. The index loc can take any value from 0 to
X509 get ext_count(x) - 1. Thereturned extension is an internal pointer which MUST NOT be freed
by the application.

X509v3_get_ext_by NID() and X509v3_get_ext_by OBJ() look for an extension with nid or obj from
extension STACK x. The search starts from the extension after lastpos or from the beginning if lastpos
is-1. If the extension isfound, itsindex is returned, otherwise -1 is returned.

X509v3 get_ext_by critical() issimilar to X509v3_get_ext_by NID() except it looks for an extension
of criticality crit. A zero value for crit looks for a non-critical extension. A nonzero value looks for a
critical extension.

X509v3 _delete ext() deletes the extension with index loc from x. The deleted extension is returned
and must be freed by the caller. If locisaninvalid index value, NULL isreturned.

X509v3_add_ext() adds extension exto STACK *x at position loc. If loc is-1, the new extension is
added to the end. If *xisNULL, anew STACK will be allocated. The passed extension ex is
duplicated internally so it must be freed after use.

X509_get_ext_count(), X509_get_ext(), X509_get_ext_by_NID(), X509_get_ext_by OBJ(),
X509 get_ext_by critical(), X509_delete_ext() and X509_add_ext() operate on the extensions of
certificate x. They are otherwise identical to the X509v3 functions.

X509 CRL_get_ext_count(), X509 CRL _get_ext(), X509 CRL_get_ext_by NID(),

3.0.11 2023-09-19 X500V3_GET_EXT_BY_NID(30sd)

X500V3_GET_EXT_BY_NID(30sd) OpenSSL X500V3_GET_EXT_BY_NID(30sd)

X509 CRL_get ext by OBJ(), X509 CRL_get ext by critical(), X509 CRL _delete ext() and
X509 CRL_add_ext() operate on the extensions of CRL x. They are otherwise identical to the X509v3
functions.

X509 REVOKED_get_ext_count(), X509_REVOKED_get_ext(),

X509 REVOKED_get_ext_by NID(), X509 REVOKED_get_ext_by OBJ(),

X509 REVOKED_get_ext_by critical(), X509_REVOKED_delete ext() and

X509 _REVOKED_add_ext() operate on the extensions of CRL entry x. They are otherwise identical
to the X509v3 functions.

NOTES
These functions are used to examine stacks of extensions directly. Applications that want to parse or
encode and add an extension should use the extension encode and decode functions instead, such as
X509 addl ext_i2d() and X509 get_ext_d2i().

For X509v3_get_ext_by NID(), X509v3 get_ext_by OBJ(), X509v3 get_ext_by critical() and its
variants, a zero index return value is not an error since extension STACK x indices start from zero.
These search functions start from the extension after the lastpos parameter so it should initially be set to
-1. If it is set to zero, the initial extension will not be checked.

X509v3_delete ext() and its variants are a bit counter-intuitive because these functions do not free the
extension they delete. They return an X509_EXTENSI ON object which must be explicitly freed using
X509 EXTENSION_free().

RETURN VALUES
X509v3 _get_ext_count() returns the extension count or O for failure.

X509v3 get ext(), X509v3_delete ext() and X509 delete ext() return an X509 EXTENSION
structure or NULL if an error occurs.

X509v3_get_ext_by OBJ() and X509v3 get_ext_by critical() return the extension index or -1 if an
error occurs.

X509v3 get_ext_by NID() returnsthe extension index or negative values if an error occurs.
X509v3 _add_ext() returnsa STACK of extensions or NULL on error.
X509 _add_ext() returns 1 on success and O on error.

SEE ALSO

3.0.11 2023-09-19 X500V3_GET_EXT_BY_NID(30sd)

X500V3_GET_EXT_BY_NID(30sd) OpenSSL X500V3_GET_EXT_BY_NID(30sd)

X500V3_get_d2i(3)

COPYRIGHT
Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use thisfile except in

compliance with the License. Y ou can obtain acopy in the file LICENSE in the source distribution or
at <https://www.openssl.org/source/license.html>.

3.0.11 2023-09-19 X500V3_GET_EXT_BY_NID(30sd)

