
XCreateGC(3) XLIB FUNCTIONS XCreateGC(3)

NAME
XCreateGC, XCopyGC, XChangeGC, XGetGCValues, XFreeGC, XGContextFromGC, XGCValues − cre-

ate or free graphics contexts and graphics context structure

SYNTAX

GC XCreateGC(Display *display , Drawable d , unsigned long valuemask , XGCValues *values);

int XCopyGC (Display *display , GC src , unsigned long valuemask , GC dest);

int XChangeGC(Display *display , GC gc , unsigned long valuemask , XGCValues *values);

Status XGetGCValues (Display *display , GC gc , unsigned long valuemask , XGCValues *values_return);

int XFreeGC(Display *display , GC gc);

GContext XGContextFromGC (GC gc);

ARGUMENTS
d Specifies the drawable.

dest Specifies the destination GC.

display Specifies the connection to the X server.

gc Specifies the GC.

src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be set, copied, changed, or returned. This

argument is the bitwise inclusive OR of zero or more of the valid GC component mask

bits.

values Specifies any values as specified by the valuemask.

values_return Returns the GC values in the specified XGCValues structure.

DESCRIPTION
The XCreateGC function creates a graphics context and returns a GC. The GC can be used with any desti-

nation drawable having the same root and depth as the specified drawable. Use with other drawables results

in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPixmap, and BadValue

errors.

The XCopyGC function copies the specified components from the source GC to the destination GC. The

source and destination GCs must have the same root and depth, or a BadMatch error results. The value-

mask specifies which component to copy, as for XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

The XChangeGC function changes the components specified by valuemask for the specified GC. The val-

ues argument contains the values to be set. The values and restrictions are the same as for XCreateGC.

Changing the clip-mask overrides any previous XSetClipRectangles request on the context. Changing the

dash-offset or dash-list overrides any previous XSetDashes request on the context. The order in which

components are verified and altered is server dependent. If an error is generated, a subset of the compo-

nents may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and BadValue errors.

The XGetGCValues function returns the components specified by valuemask for the specified GC. If the

valuemask contains a valid set of GC mask bits (GCFunction, GCPlaneMask, GCForeground, GCBack-

ground, GCLineWidth, GCLineStyle, GCCapStyle, GCJoinStyle, GCFillStyle, GCFillRule, GCTile,

GCStipple, GCTileStipXOrigin, GCTileStipYOrigin, GCFont, GCSubwindowMode, GCGraphicsEx-

posures, GCClipXOrigin, GCClipYOrigin, GCDashOffset, or GCArcMode) and no error occurs,

XGetGCValues sets the requested components in values_return and returns a nonzero status. Otherwise, it

returns a zero status. Note that the clip-mask and dash-list (represented by the GCClipMask and

X Version 11 libX11 1.8.7 1

XCreateGC(3) XLIB FUNCTIONS XCreateGC(3)

GCDashList bits, respectively, in the valuemask) cannot be requested. Also note that an invalid resource

ID (with one or more of the three most significant bits set to 1) will be returned for GCFont, GCTile, and

GCStipple if the component has never been explicitly set by the client.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate a BadGC error.

STRUCTURES
The XGCValues structure contains:

/* GC attribute value mask bits */

#define GCFunction (1L<<0)

#define GCPlaneMask (1L<<1)

#define GCForeground (1L<<2)

#define GCBackground (1L<<3)

#define GCLineWidth (1L<<4)

#define GCLineStyle (1L<<5)

#define GCCapStyle (1L<<6)

#define GCJoinStyle (1L<<7)

#define GCFillStyle (1L<<8)

#define GCFillRule (1L<<9)

#define GCTile (1L<<10)

#define GCStipple (1L<<11)

#define GCTileStipXOrigin (1L<<12)

#define GCTileStipYOrigin (1L<<13)

#define GCFont (1L<<14)

#define GCSubwindowMode (1L<<15)

#define GCGraphicsExposures (1L<<16)

#define GCClipXOrigin (1L<<17)

#define GCClipYOrigin (1L<<18)

#define GCClipMask (1L<<19)

#define GCDashOffset (1L<<20)

#define GCDashList (1L<<21)

#define GCArcMode (1L<<22)

/* Values */

typedef struct {

int function; /* logical operation */

unsigned long plane_mask; /* plane mask */

unsigned long foreground; /* foreground pixel */

unsigned long background; /* background pixel */

int line_width; /* line width (in pixels) */

int line_style; /* LineSolid, LineOnOffDash, LineDoubleDash */

int cap_style; /* CapNotLast, CapButt, CapRound, CapProjecting */

int join_style; /* JoinMiter, JoinRound, JoinBevel */

int fill_style; /* FillSolid, FillTiled, FillStippled FillOpaqueStippled*/

int fill_rule; /* EvenOddRule, WindingRule */

int arc_mode; /* ArcChord, ArcPieSlice */

Pixmap tile; /* tile pixmap for tiling operations */

Pixmap stipple; /* stipple 1 plane pixmap for stippling */

int ts_x_origin; /* offset for tile or stipple operations */

int ts_y_origin;

Font font; /* default text font for text operations */

int subwindow_mode; /* ClipByChildren, IncludeInferiors */

Bool graphics_exposures; /* boolean, should exposures be generated */

X Version 11 libX11 1.8.7 2

XCreateGC(3) XLIB FUNCTIONS XCreateGC(3)

int clip_x_origin; /* origin for clipping */

int clip_y_origin;

Pixmap clip_mask; /* bitmap clipping; other calls for rects */

int dash_offset; /* patterned/dashed line information */

char dashes;

} XGCValues;

The function attributes of a GC are used when you update a section of a drawable (the destination) with bits

from somewhere else (the source). The function in a GC defines how the new destination bits are to be

computed from the source bits and the old destination bits. GXcopy is typically the most useful because it

will work on a color display, but special applications may use other functions, particularly in concert with

particular planes of a color display. The 16 GC functions, defined in X11/X.h, are:

Function Name Value Operation

GXclear 0x0 0

GXand 0x1 src AND dst

GXandReverse 0x2 src AND NOT dst

GXcopy 0x3 src

GXandInverted 0x4 (NOT src) AND dst

GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)

GXequiv 0x9 (NOT src) XOR dst

GXinvert 0xa NOT dst

GXorReverse 0xb src OR (NOT dst)

GXcopyInverted 0xc NOT src

GXorInverted 0xd (NOT src) OR dst

GXnand 0xe (NOT src) OR (NOT dst)

GXset 0xf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes attribute is of type

long, and it specifies which planes of the destination are to be modified, one bit per plane. A monochrome

display has only one plane and will be the least significant bit of the word. As planes are added to the dis-

play hardware, they will occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise on correspond-

ing bits of the pixels. That is, a Boolean operation is performed in each bit plane. The plane_mask restricts

the operation to a subset of planes. A macro constant AllPlanes can be used to refer to all planes of the

screen simultaneously. The result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane_mask. They are sim-

ply truncated to the appropriate number of bits. The line-width is measured in pixels and either can be

greater than or equal to one (wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise specified by

the join-style or cap-style, the bounding box of a wide line with endpoints [x1, y1], [x2, y2] and width w is

a rectangle with vertices at the following real coordinates:

[x1-(w*sn/2), y1+(w*cs/2)], [x1+(w*sn/2), y1-(w*cs/2)],

[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line. A pixel is part of the

line and so is drawn if the center of the pixel is fully inside the bounding box (which is viewed as having in-

finitely thin edges). If the center of the pixel is exactly on the bounding box, it is part of the line if and only

if the interior is immediately to its right (x increasing direction). Pixels with centers on a horizontal edge

X Version 11 libX11 1.8.7 3

XCreateGC(3) XLIB FUNCTIONS XCreateGC(3)

are a special case and are part of the line if and only if the interior or the boundary is immediately below (y

increasing direction) and the interior or the boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device-dependent algo-

rithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn unclipped from

[x1+dx,y1+dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing the first line if and only if the

point [x+dx,y+dy] is touched by drawing the second line.

2. The effective set of points comprising a line cannot be affected by clipping. That is, a point is

touched in a clipped line if and only if the point lies inside the clipping region and the point would be

touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line drawn from [x2,y2]

to [x1,y1], not counting cap-style and join-style. It is recommended that this property be true for thin lines,

but this is not required. A line-width of zero may differ from a line-width of one in which pixels are drawn.

This permits the use of many manufacturers’ line drawing hardware, which may run many times faster than

the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width one. However, because of

their different drawing algorithms, thin lines may not mix well aesthetically with wide lines. If it is desir-

able to obtain precise and uniform results across all displays, a client should always use a line-width of one

rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled differently from

the odd dashes (see fill-style) with CapButt style used where even and odd

dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all internal ends of the

individual dashes, except CapNotLast is treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero the final end-

point is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the line) with no

projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-width, centered on

the endpoint. (This is equivalent to CapButt for line-width of zero).

CapProjecting The line is square at the end, but the path continues beyond the endpoint for a

distance equal to half the line-width. (This is equivalent to CapButt for line-

width of zero).

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if the angle is

less than 11 degrees, then a JoinBevel join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-width, centered

on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular notch filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to both endpoints, the

semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device dependent, but the desired effect is that nothing

is drawn.

X Version 11 libX11 1.8.7 4

XCreateGC(3) XLIB FUNCTIONS XCreateGC(3)

CapButt thin The results are device dependent, but the desired effect is that a single

pixel is drawn.

CapRound thin The results are the same as for CapButt/thin.

CapProjecting thin The results are the same as for CapButt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the endpoint, and with the diam-

eter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate axes, centered

at the endpoint, and with the sides equal to the line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at one or both end-

points, the effect is as if the line was removed from the overall path. However, if the total path consists of

or is reduced to a single point joined with itself, the effect is the same as when the cap-style is applied at

both endpoints.

The tile/stipple represents an infinite two-dimensional plane, with the tile/stipple replicated in all dimen-

sions. When that plane is superimposed on the drawable for use in a graphics operation, the upper-left cor-

ner of some instance of the tile/stipple is at the coordinates within the drawable specified by the tile/stipple

origin. The tile/stipple and clip origins are interpreted relative to the origin of whatever destination draw-

able is specified in a graphics request. The tile pixmap must have the same root and depth as the GC, or a

BadMatch error results. The stipple pixmap must have depth one and must have the same root as the GC,

or a BadMatch error results. For stipple operations where the fill-style is FillStippled but not FillOpaque-

Stippled, the stipple pattern is tiled in a single plane and acts as an additional clip mask to be ANDed with

the clip-mask. Although some sizes may be faster to use than others, any size pixmap can be used for tiling

or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For all text and fill requests

(for example, XDrawText, XDrawText16, XFillRectangle, XFillPolygon, and XFillArc); for line re-

quests with line-style LineSolid (for example, XDrawLine, XDrawSegments, XDrawRectangle,

XDrawArc); and for the even dashes for line requests with line-style LineOnOffDash or LineDou-

bleDash, the following apply:

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple, but with background

ev erywhere stipple has a zero and with foreground everywhere stipple

has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by the fill-style in the

following manner:

FillSolid Background

FillTiled Same as for even dashes

FillOpaqueStippled Same as for even dashes

FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap is later used as the

destination for a graphics request, the change might or might not be reflected in the GC. If the pixmap is

used simultaneously in a graphics request both as a destination and as a tile or stipple, the results are unde-

fined.

For optimum performance, you should draw as much as possible with the same GC (without changing its

components). The costs of changing GC components relative to using different GCs depend on the display

hardware and the server implementation. It is quite likely that some amount of GC information will be

X Version 11 libX11 1.8.7 5

XCreateGC(3) XLIB FUNCTIONS XCreateGC(3)

cached in display hardware and that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set with XSet-

Dashes. Specifying a value of N is equivalent to specifying the two-element list [N, N] in XSetDashes.

The value must be nonzero, or a BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a pixmap, it must have

depth one and have the same root as the GC, or a BadMatch error results. If clip-mask is set to None, the

pixels are always drawn regardless of the clip origin. The clip-mask also can be set by calling the XSet-

ClipRectangles or XSetRegion functions. Only pixels where the clip-mask has a bit set to 1 are drawn.

Pixels are not drawn outside the area covered by the clip-mask or where the clip-mask has a bit set to 0.

The clip-mask affects all graphics requests. The clip-mask does not clip sources. The clip-mask origin is

interpreted relative to the origin of whatever destination drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or IncludeInferiors. For ClipByChildren, both

source and destination windows are additionally clipped by all viewable InputOutput children. For In-

cludeInferiors, neither source nor destination window is clipped by inferiors. This will result in including

subwindow contents in the source and drawing through subwindow boundaries of the destination. The use

of IncludeInferiors on a window of one depth with mapped inferiors of differing depth is not illegal, but

the semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon requests and can be set

to EvenOddRule or WindingRule. For EvenOddRule, a point is inside if an infinite ray with the point as

origin crosses the path an odd number of times. For WindingRule, a point is inside if an infinite ray with

the point as origin crosses an unequal number of clockwise and counterclockwise directed path segments.

A clockwise directed path segment is one that crosses the ray from left to right as observed from the point.

A counterclockwise segment is one that crosses the ray from right to left as observed from the point. The

case where a directed line segment is coincident with the ray is uninteresting because you can simply

choose a different ray that is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is an infinitely thin line.

A pixel is inside if the center point of the pixel is inside and the center point is not on the boundary. If the

center point is on the boundary, the pixel is inside if and only if the polygon interior is immediately to its

right (x increasing direction). Pixels with centers on a horizontal edge are a special case and are inside if

and only if the polygon interior is immediately below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice or ArcChord. For

ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose ev ent generation for XCopyArea and XCopyPlane

requests (and any similar requests defined by extensions).

DIAGNOSTICS
BadAlloc The server failed to allocate the requested resource or server memory.

BadDrawable A value for a Drawable argument does not name a defined Window or Pixmap.

BadFont A value for a Font or GContext argument does not name a defined Font.

BadGC A value for a GContext argument does not name a defined GContext.

BadMatch An InputOnly window is used as a Drawable.

BadMatch Some argument or pair of arguments has the correct type and range but fails to match in

some other way required by the request.

BadPixmap A value for a Pixmap argument does not name a defined Pixmap.

BadValue Some numeric value falls outside the range of values accepted by the request. Unless a

specific range is specified for an argument, the full range defined by the argument’s type

is accepted. Any argument defined as a set of alternatives can generate this error.

X Version 11 libX11 1.8.7 6

XCreateGC(3) XLIB FUNCTIONS XCreateGC(3)

SEE ALSO
AllPlanes(3), XCopyArea(3), XCreateRegion(3), XDrawArc(3), XDrawLine(3), XDrawRectangle(3),

XDrawText(3), XFillRectangle(3), XQueryBestSize(3), XSetArcMode(3), XSetClipOrigin(3), XSetFill-

Style(3), XSetFont(3), XSetLineAttributes(3), XSetState(3), XSetTile(3)

Xlib − C Language X Interface

X Version 11 libX11 1.8.7 7

