
NAME
XDGA - Client library for the XFree86-DGA extension.

SYNOPSIS
#include <X11/extensions/xf86dga.h>

Bool XDGAQueryExtension(

Display *dpy,

int *eventBase,

int *errorBase)

Bool XDGAQueryVersion(

Display *dpy,

int *majorVersion,

int *minorVersion)

XDGAMode *XDGAQueryModes(

Display *dpy,

int screen,

int *num)

XDGADevice *XDGASetMode(

Display *dpy,

int screen,

int mode)

Bool XDGAOpenFramebuffer(

Display *dpy,

int screen)

void XDGACloseFramebuffer(

Display *dpy,

int screen)

void XDGASetViewport(
Display *dpy,

int screen,

int x,

int y,

int flags)

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



void XDGAInstallColormap(

Display *dpy,

int screen,

Colormap cmap)

Colormap XDGACreateColormap(

Display *dpy,

int screen,

XDGADevice *device,

int alloc)

void XDGASelectInput(
Display *dpy,

int screen,

long event_mask)

void XDGAFillRectangle(

Display *dpy,

int screen,

int x,

int y,

unsigned int width,

unsigned int height,

unsigned long color)

void XDGACopyArea(

Display *dpy,

int screen,

int srcx,

int srcy,

unsigned int width,

unsigned int height,

int dstx,

int dsty)

void XDGACopyTransparentArea(

Display *dpy,

int screen,

int srcx,

int srcy,

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



unsigned int width,

unsigned int height,

int dstx,

int dsty,

unsigned long key)

int XDGAGetViewportStatus(

Display *dpy,

int screen)

void XDGASync(

Display *dpy,

int screen)

Bool XDGASetClientVersion(

Display *dpy)

void XDGAChangePixmapMode(

Display *dpy,

int screen,

int *x,

int *y,

int mode)

void XDGAKeyEventToXKeyEvent(
XDGAKeyEvent *dk,

XKeyEvent *xk)

DESCRIPTION
The XFree86-DGA extension is an X server extension for allowing client programs direct access to the

video frame buffer. This is a brief description of the programming interface for version 2.0 of the

XFree86-DGA extension.

XFree86-DGA is not intended as a direct rendering API, but rather, as a mechanism to "get the X

Server out of the way" so that some other direct rendering API can have full access to the hardware.

With this in mind, DGA does provide clients some direct access to the hardware without requiring a

separate rendering API, but this access is limited to direct linear framebuffer access.

Most of the reasons for the XFree86-DGA extension’s existence are now better served in other ways.

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



Further development of this extension is not expected, and it may be deprecated in a future release.

The features that continue to be useful will either be provided through other existing mechanisms, or

through an extension that address those needs more specifically.

XFree86-DGA is initialized by passing a number corresponding to a valid XDGAMode to

XDGASetMode(). Clients can get a list of valid modes from XDGAQueryModes(). Each

XDGAMode corresponds to a different framebuffer layout.

XDGAQueryModes() returns a pointer to an array of XDGAModes which are valid for the given

screen. num is the number of elements in the array. The returned array can be freed with XFree(3).

The XDGAMode structure is as follows:

typedef struct {

int num;

char *name;

float verticalRefresh;

int flags;

int imageWidth;

int imageHeight;

int pixmapWidth;

int pixmapHeight;

int bytesPerScanline;

int byteOrder;

int depth;

int bitsPerPixel;

unsigned long redMask;

unsigned long greenMask;

unsigned long blueMask;

short visualClass;

int viewportWidth;

int viewportHeight;

int xViewportStep;

int yViewportStep;

int maxViewportX;

int maxViewportY;

int viewportFlags;

int reserved1;

int reserved2;

} XDGAMode;

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



num A unique identifying number (num > 0) for the mode. This is the number referenced when

initializing the mode.

name The name of the corresponding modeline as given in the xorg.conf file.

verticalRefresh

The vertical refresh rate for the modeline (in Hz).

flags Any of the following may be OR’d together:

XDGAConcurrentAccess
Indicates that concurrent client/server access to the framebuffer is possible. If this flag

is not set it is very important to call XDGASync() before directly accessing the

framebuffer if a call to XDGAFillRectangle(), XDGACopyArea() or

XDGACopyTransparentArea() or any Xlib rendering function has been made prior to

such accesses.

XDGASolidFillRect
Indicates that XDGAFillRectangle() is supported.

XDGABlitRect
Indicates that XDGACopyArea() is supported.

XDGABlitTransRect
Indicates that XDGACopyTransparentArea() is supported.

XDGAPixmap
Indicates that a Pixmap will be returned when the mode is initialized. This means that

rendering with Xlib is possible for this mode.

XDGAInterlaced

XDGADoublescan
Indicates that the mode is an interlaced or doublescan mode.

imageWidth

imageHeight

The width and height of the framebuffer area accessible by the client. This rectangle is

always justified to the upper left-hand corner.

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



pixmapWidth

pixmapHeight

The width and height of the framebuffer area accessible by Xlib. This rectangle is always

justified to the upper left-hand corner. These fields are only valid if the XDGAPixmap flag

is set in the flags field.

bytesPerScanline

The pitch of the framebuffer in bytes.

byteOrder

MSBFirst or LSBFirst.

depth The number of bits in each pixel which contain usable data.

bitsPerPixel

The number of bits taken up by each pixel.

redMask

greenMask

blueMask

The RGB masks. These do not apply to color-indexed modes.

visualClass

TrueColor, PseudoColor, DirectColor, etc.

viewportWidth

viewportHeight

The dimensions of the portion of the framebuffer which will be displayed on the screen.

xViewportStep

yViewportStep

The granularity of the x,y viewport positioning possible with the XDGASetViewport()
function.

maxViewportX

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



maxViewportY

The maximum x and y positions possible with the XDGASetViewport() function.

viewportFlags

Any of the following may be OR’d together

XDGAFlipRetrace
Indicates that the hardware can switch viewports during the vertical retrace.

XDGAFlipImmediate
Indicates that the hardware can switch viewports immediately without waiting for the

vertical retrace.

XDGASetMode() initialises the XDGAMode corresponding to num. To exit DGA mode and return to

normal server operation, call XDGASetMode() with num set to zero. XDGASetMode() returns a

pointer to an XDGADevice if successful. The XDGADevice can be freed with XFree(3). The

XDGADevice structure is as follows:

typedef struct {

XDGAMode mode;

unsigned char *data;

Pixmap pixmap;

} XDGADevice;

mode The XDGAMode structure, identical to the information returned by XDGAQueryModes().

data If direct framebuffer access is desired and possible, this field will contain a pointer to the

mapped framebuffer memory. Generally, this field will be zero unless a call to

XDGAOpenFramebuffer() is made prior to initialization of the mode.

pixmap If the mode supports Xlib rendering as indicated by XDGAPixmap in the flags field, this will

contain a Pixmap handle suitable for passing as the drawable argument to Xlib functions.

This field will be zero if Xlib rendering is not supported.

XDGAQueryExtension() checks for the presence of the extension and returns the event and error bases.

XDGAQueryVersion() returns the XFree86-DGA major and minor version numbers.

XDGAOpenFramebuffer() maps the framebuffer memory. The client needs sufficient privileges to be

able to do this. XDGAOpenFramebuffer() should be called prior to initializing a DGA mode if direct

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



framebuffer access is desired for that mode. XDGAOpenFramebuffer() does not need to be called if

direct framebuffer access is not required. If the framebuffer is opened,

XDGACloseFramebuffer() should be called prior to client exit to unmap the memory.

XDGAChangePixmapMode() can be used to change between two pixmap sizes in cases where a

Pixmap is available for Xlib rendering. The following values for the mode parameter are available:

XDGAPixmapModeLarge
The pixmap size is defined by the pixmapWidth and pixmapHeight fields in the

XDGAMode structure. The x and y values are ignored in this case.

XDGAPixmapModeSmall
The pixmap size is defined by the viewportWidth and viewportHeight fields in the

XDGAMode structure. In this mode, the x and y values specify where in the

framebuffer this pixmap rectangle is located. It may be placed anywhere within the Xlib

renderable region described by the pixmapWidth and pixmapHeight fields in the

XDGAMode. The x and y values returned are the resultant location of the pixmap and

may be different from the requested x,y location due to platform specific alignment

constraints. All Xlib rendering is clipped to this pixmap rectangle.

XDGASetViewport() sets the upper left-hand corner of the rectangle of framebuffer that is to be

displayed on the screen. Not all locations may be supported by the hardware and requested locations

will be adjusted according to the xViewportStep and yViewportStep fields in the XDGAMode.

flags can be XDGAFlipRetrace or XDGAFlipImmediate to adjust the viewport location at the next

vertical retrace or immediately. Values other than the supported values advertised in the mode’s

viewportFlags field will result in hardware-specific default behavior. XDGAFlipImmediate will block

until the flip is completed. XDGAFlipRetrace will generally NOT block so it is necessary to monitor

the viewport status with XDGAGetViewportStatus(). XDGAFlipImmediate requests during pending

XDGAFlipRetrace requests will be ignored.

XDGAGetViewportStatus() keeps track of the XDGASetViewport() requests still pending. The return

value of the function will have consecutive bits set (LSB justified), each bit representing a pending

viewport change. For example:

while(XDGAGetViewportStatus(dpy, screen));

waits for all pending viewport changes to finish.

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



while(0x2 & XDGAGetViewportStatus(dpy, screen));

waits until all but the last viewport changes have completed.

XDGACreateColormap() is similar to the Xlib function XCreateColormap(3) except that it takes an

XDGADevice as an argument instead of a Window and Visual. Though XCreateColormap(3) may

create usable colormaps in some cases, XDGACreateColormap() is the preferred method for creating

colormaps in DGA since there may not be an advertised visual compatible with the DGA device.

XDGAInstallColormap() must be used to install colormaps in DGA mode. XInstallColormap(3) will

not work.

XDGASelectInput() enables DGA’s own event mechanism. This function is similar to

XSelectInput(3), and all Xlib Key, Button and Motion masks are supported. The following DGA

events are defined:

typedef struct {

int type; /* ButtonPress or ButtonRelease + the DGA event base*/

unsigned long serial; /* # or last request processed by the server */

Display *display; /* Display the event was read from */

int screen; /* The screen number the event came from */

Time time; /* milliseconds */

unsigned int state; /* key or button mask */

unsigned int button; /* detail */

} XDGAButtonEvent;

typedef struct {

int type; /* KeyPress or KeyRelease + the DGA event base*/

unsigned long serial; /* # or last request processed by the server */

Display *display; /* Display the event was read from */

int screen; /* The screen number the event came from */

Time time; /* milliseconds */

unsigned int state; /* key or button mask */

unsigned int keycode; /* detail */

} XDGAKeyEvent;

typedef struct {

int type; /* MotionNotify + the DGA event base*/

unsigned long serial; /* # or last request processed by the server */

Display *display; /* Display the event was read from */

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)



int screen; /* The screen number the event came from */

Time time; /* milliseconds */

unsigned int state; /* key or button mask */

int dx; /* relative pointer motion */

int dy; /* relative pointer motion */

} XDGAMotionEvent;

XDGAKeyEventToXKeyEvent() is a helper function to translate XDGAKeyEvents into XKeyEvents

suitable for use with XLookupKeysym(3).

XDGAFillRectangle(), XDGACopyArea(), and XDGACopyTransparentArea() are included with some

reservation since DGA is not intended as a rendering API. These are merely convenience routines and

are optionally supported. The associated flags will be set in the XDGAMode’s flags field if these

functions are supported. These functions will be no-ops otherwise. they do not provide direct access to

the hardware, but are simply context-less operations performed by the server.

XDGASync() blocks until all server rendering to the framebuffer completes. If Xlib or the 3 rendering

functions above are used, XDGASync() must be called before the client directly accesses the

framebuffer as the server rendering is asynchronous with the client and may have not completed. This

is especially important if the XDGAConcurrentAccess flag is not set in the XDGAMode’s flags field

since concurrent access by the server and client may result in a system lockup.

SEE ALSO
Xorg(1), xorg.conf(5)

AUTHORS
XFree86-DGA version 2 was written by Mark Vojkovich. Version 1 was written by Jon Tombs, Harm

Hanemaayer, Mark Vojkovich.

XDGA(3) FreeBSD Library Functions Manual XDGA(3)

X Version 11 libXxf86dga 1.1.6 XDGA(3)


