
NAME
Xcursor - Cursor management library

SYNOPSIS
#include <X11/Xcursor/Xcursor.h>

DESCRIPTION
Xcursor is a simple library designed to help locate and load cursors. Cursors can be loaded from files

or memory. A library of common cursors exists which map to the standard X cursor names. Cursors

can exist in several sizes and the library automatically picks the best size.

FUNCTIONAL OVERVIEW
Xcursor is built in a couple of layers; at the bottom layer is code which can load cursor images from

files. Above that is a layer which locates cursor files based on the library path and theme. At the top is

a layer which builds cursors either out of an image loaded from a file or one of the standard X cursors.

When using images loaded from files, Xcursor prefers to use the Render extension CreateCursor

request if supported by the X server. Where not supported, Xcursor maps the cursor image to a

standard X cursor and uses the core CreateCursor request.

CURSOR FILES
Xcursor defines a new format for cursors on disk. Each file holds one or more cursor images. Each

cursor image is tagged with a nominal size so that the best size can be selected automatically. Multiple

cursors of the same nominal size can be loaded together; applications are expected to use them as an

animated sequence.

Cursor files are stored as a header containing a table of contents followed by a sequence of chunks.

The table of contents indicates the type, subtype and position in the file of each chunk. The file header

looks like:

magic: CARD32 "Xcur" (0x58, 0x63, 0x75, 0x72)

header: CARD32 bytes in this header

version: CARD32 file version number

ntoc: CARD32 number of toc entries

toc: LISTofTOC table of contents

Each table of contents entry looks like:

type: CARD32 entry type

subtype: CARD32 type-specific label - size for images

position: CARD32 absolute byte position of table in file

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

Each chunk in the file has set of common header fields followed by additional type-specific fields:

header: CARD32 bytes in chunk header (including type-specific fields)

type: CARD32 must match type in TOC for this chunk

subtype: CARD32 must match subtype in TOC for this chunk

version: CARD32 version number for this chunk type

There are currently two chunk types defined for cursor files; comments and images. Comments look

like:

header: 20 Comment headers are 20 bytes

type: 0xfffe0001 Comment type is 0xfffe0001

subtype: { 1 (COPYRIGHT), 2 (LICENSE), 3 (OTHER) }

version: 1

length: CARD32 byte length of UTF-8 string

string: LISTofCARD8 UTF-8 string

Images look like:

header: 36 Image headers are 36 bytes

type: 0xfffd0002 Image type is 0xfffd0002

subtype: CARD32 Image subtype is the nominal size

version: 1

width: CARD32 Must be less than or equal to 0x7fff

height: CARD32 Must be less than or equal to 0x7fff

xhot: CARD32 Must be less than or equal to width

yhot: CARD32 Must be less than or equal to height

delay: CARD32 Delay between animation frames in milliseconds

pixels: LISTofCARD32 Packed ARGB format pixels

THEMES
Xcursor (mostly) follows the freedesktop.org spec for theming icons. The default search path it uses is

~/.local/share/icons, ~/.icons, /usr/local/share/icons, /usr/local/share/pixmaps

Within each of these directories, it searches for a directory using the theme name:

+o Within the theme directory, it looks for cursor files in the "cursors" subdirectory.

Xcursor looks for a specific file, which must be one of the cursor shape names, e.g., as used in

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

XcursorLibraryLoadImage or XcursorLibraryShape.

+o If it finds no matching cursor file in the "cursors" subdirectory, Xcursor next looks for an

"index.theme" file in each theme directory to look for inherited themes. Those are lines in this

format:

Inherits = theme-name

Xcursor uses the first inherited theme-name, ignoring others which may exist in a given

"index.theme" file. If it finds an inherited theme, Xcursor searches along the path to use that as

well. Xcursor ignores other keys in the "index.theme" file, including "Name" (i.e., the name

which a graphical application may use as the presentation name).

More than one theme-name may be listed on the Inherits= line. The freedesktop.org spec states

that list items are separated by commas. Xcursor also accepts semicolon, but translates both to

colon when searching the path. Xcursor expects only one Inherits= line; the freedesktop.org spec

is unclear whether multiple keys are allowed.

If no theme is set, or if no cursor is found for the specified theme anywhere along the path, Xcursor

checks the "default" theme.

When Xcursor finds a cursor file, it stops searching. It always uses the first cursor file found while

searching along the path.

DATATYPES
XcursorImage

holds a single cursor image in memory. Each pixel in the cursor is a 32-bit value containing

ARGB with A in the high byte.

typedef struct _XcursorImage {

XcursorDim size; /* nominal size for matching */

XcursorDim width; /* actual width */

XcursorDim height; /* actual height */

XcursorDim xhot; /* hot spot x (must be inside image) */

XcursorDim yhot; /* hot spot y (must be inside image) */

XcursorPixel *pixels; /* pointer to pixels */

} XcursorImage;

XcursorImages
holds multiple XcursorImage structures. They are all freed when the XcursorImages is freed in

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

XcursorImagesDestroy.

typedef struct _XcursorImages {

int nimage; /* number of images */

XcursorImage **images; /* array of XcursorImage pointers */

} XcursorImages;

XcursorCursors
Holds multiple Cursor objects. They are all freed when the XcursorCursors is freed. These are

reference counted so that multiple XcursorAnimate structures can use the same XcursorCursors.

typedef struct _XcursorCursors {

Display *dpy; /* Display holding cursors */

int ref; /* reference count */

int ncursor; /* number of cursors */

Cursor *cursors; /* array of cursors */

} XcursorCursors;

XcursorAnimate
References a set of cursors and a sequence within that set. Multiple XcursorAnimate structures

may reference the same XcursorCursors; each holds a reference which is removed when the

XcursorAnimate is freed.

typedef struct _XcursorAnimate {

XcursorCursors *cursors; /* list of cursors to use */

int sequence; /* which cursor is next */

} XcursorAnimate;

XcursorFile
Xcursor provides an abstract API for accessing the file data. Xcursor provides a stdio

implementation of this abstract API; applications are free to create additional implementations.

These functions parallel the stdio functions in return value and expected argument values; the read

and write functions flip the arguments around to match the POSIX versions.

typedef struct _XcursorFile {

void *closure;

int (*read) (XcursorFile *file, unsigned char *buf, int len);

int (*write) (XcursorFile *file, unsigned char *buf, int len);

int (*seek) (XcursorFile *file, long offset, int whence);

};

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

FUNCTIONS
Object Management

XcursorImage *XcursorImageCreate (

int width,

int height)

void XcursorImageDestroy (

XcursorImage *image)

Allocate and free images. On allocation, the hotspot and the pixels are left uninitialized. The size

is set to the maximum of width and height.

XcursorImages *XcursorImagesCreate (

int size)

void XcursorImagesDestroy (

XcursorImages *images)

Allocate and free arrays to hold multiple cursor images. On allocation, nimage is set to zero.

XcursorCursors *XcursorCursorsCreate (

Display *dpy,

int size)

void XcursorCursorsDestroy (

XcursorCursors *cursors)

Allocate and free arrays to hold multiple cursors. On allocation, ncursor is set to zero, ref is set to

one.

Reading and writing images.
XcursorImage *XcursorXcFileLoadImage (

XcursorFile *file,

int size)

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

XcursorImages *XcursorXcFileLoadImages (

XcursorFile *file,

int size)

XcursorImages *XcursorXcFileLoadAllImages (

XcursorFile *file)

XcursorBool XcursorXcFileLoad (

XcursorFile *file,

XcursorComments **commentsp,

XcursorImages **imagesp)

XcursorBool XcursorXcFileSave (

XcursorFile *file,

const XcursorComments *comments,

const XcursorImages *images)

These read and write cursors from an XcursorFile handle. After reading, the file pointer will be

left at some random place in the file.

XcursorImage *XcursorFileLoadImage (

FILE *file,

int size)

XcursorImages *XcursorFileLoadImages (

FILE *file,

int size)

XcursorImages *XcursorFileLoadAllImages (

FILE *file)

XcursorBool XcursorFileLoad (

FILE *file,

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

XcursorComments **commentsp,

XcursorImages **imagesp)

XcursorBool XcursorFileSaveImages (

FILE *file,

const XcursorImages *images)

XcursorBool XcursorFileSave (

FILE *file,

const XcursorComments *comments,

const XcursorImages *images)

These read and write cursors from a stdio FILE handle. Writing flushes before returning so that

any errors should be detected.

XcursorImage *XcursorFilenameLoadImage (

const char *filename,

int size)

XcursorImages *XcursorFilenameLoadImages (

const char *filename,

int size)

XcursorImages *XcursorFilenameLoadAllImages (

const char *file)

XcursorBool XcursorFilenameLoad (

const char *file,

XcursorComments **commentsp,

XcursorImages **imagesp)

XcursorBool XcursorFilenameSaveImages (

const char *filename,

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

const XcursorImages *images)

XcursorBool XcursorFilenameSave (

const char *file,

const XcursorComments *comments,

const XcursorImages *images)

These parallel the stdio FILE interfaces above, but take filenames.

Reading library images
XcursorImage *XcursorLibraryLoadImage (

const char *name,

const char *theme,

int size)

XcursorImages *XcursorLibraryLoadImages (

const char *name,

const char *theme,

int size)

These search the library path, loading the first file found of the desired size, using a private

function (XcursorScanTheme) to find the appropriate theme:

+o If theme is not NULL, use that.

+o If theme is NULL, or if there was no match for the desired theme, use "default" for the theme

name.

+o If neither search succeeds, these functions return NULL.

The two functions differ by more than the number of images loaded:

+o XcursorLibraryLoadImage calls XcursorFileLoadImage but

+o XcursorLibraryLoadImages calls XcursorFileLoadImages, and (on success) it calls

XcursorImagesSetName to associate name with the result.

Library attributes

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

const char * XcursorLibraryPath (void)

Returns the library search path:

+o If the environment variable XCURSOR_PATH is set, return that value.

+o Otherwise, return the compiled-in search path.

int XcursorLibraryShape (

const char *library)

Search Xcursor’s table of cursor font names for the given "shape name" (library):

+o If found, return the index into that table, multiplied by two (to account for the source- and

mask-values used in an X cursor font).

+o If not found, return -1.

Cursor APIs
Cursor XcursorFilenameLoadCursor (

Display *dpy,

const char *file)

XcursorCursors *XcursorFilenameLoadCursors (

Display *dpy,

const char *file)

These load cursors from the specified file.

Cursor XcursorLibraryLoadCursor (

Display *dpy,

const char *name)

XcursorCursors *XcursorLibraryLoadCursors (

Display *dpy,

const char *name)

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

These load cursors using the specified library name. The theme comes from the display.

Cursor XcursorImageLoadCursor(

Display *dpy,

const XcursorImage *image)

This creates a cursor, given the image to display. It calls XcursorSupportsARGB to decide what

type of cursor to create:

+o XRenderCreateCursor is used if ARGB is supported on the display, and

+o XCreatePixmapCursor is used otherwise.

Cursor XcursorImagesLoadCursor(

Display *dpy,

const XcursorImages *images)

This provides an interface for creating animated cursors, if the images array contains multiple

images, and if XcursorSupportsAnim returns true. Otherwise, it calls XcursorImageLoadCursor.

XcursorCursors *XcursorImagesLoadCursors(

Display *dpy,

const XcursorImages *images)

This calls XcursorCursorsCreate to create an array of XcursorCursors, to correspond to the

XcursorImages images array, and uses XcursorImageLoadCursor to load the corresponding cursor

data.

Normally it returns the resulting array pointer. On any failure, it discards the result

XcursorCursorsDestroy, and returns NULL.

X Cursor Name APIs
XcursorImage *XcursorShapeLoadImage (

unsigned int shape,

const char *theme,

int size)

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

XcursorImages *XcursorShapeLoadImages (

unsigned int shape,

const char *theme,

int size)

These map shape to a library name using the standard X cursor names and then load the images.

Cursor XcursorShapeLoadCursor (

Display *dpy,

unsigned int shape)

XcursorCursors *XcursorShapeLoadCursors (

Display *dpy,

unsigned int shape)

These map shape to a library name and then load the cursors.

X Cursor Comment APIs
XcursorComment *XcursorCommentCreate (

XcursorUInt comment_type,

int length)

XcursorXcFileLoad uses this function to allocate an XcursorComment structure for a single cursor.

The comment_type parameter is used as the subtype field, e.g., COPYRIGHT. The length is the

number of bytes to allocate for the comment text.

void XcursorCommentDestroy(

XcursorComment *comment)

Deallocates the given XcursorComment structure.

XcursorComments * XcursorCommentsCreate (

int size)

XcursorXcFileLoad uses this function to allocate an index of XcursorComment structure pointers.

The size parameter tells it how many pointers will be in the index.

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

void XcursorCommentsDestroy (

XcursorComments *comments)

Deallocates the given XcursorComments structure as well as the XcursorComment structures

which it points to.

Animated Cursors
XcursorAnimate * XcursorAnimateCreate (

XcursorCursors *cursors)

Wrap the given array of cursors in a newly allocated XcursorAnimate structure, which adds a

sequence number used in XcursorAnimateNext.

void XcursorAnimateDestroy (

XcursorAnimate *animate)

Discards the given animate data, freeing both the XcursorCursors array of cursors as well as the

XcursorAnimate structure.

Cursor XcursorAnimateNext (

XcursorAnimate *animate)

Cyclically returns the next Cursor in the array, incrementing the sequence number to prepare for

the next call.

The caller is responsible for displaying the series of Cursor images. Xcursor does not do that.

Glyph Cursor APIs
The X11 XCreateFontCursor and XCreateGlyphCursor functions use this part of the API to extend the

X core cursors feature to use themes.

void XcursorImageHash (

XImage *image,

unsigned char hash[XCURSOR_BITMAP_HASH_SIZE])

Compute a hash of the image, to display when the environment variable XCURSOR_DISCOVER

is set.

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

void XcursorImagesSetName (

XcursorImages *images,

const char *name)

Associates the given name with the images.

void XcursorNoticeCreateBitmap (

Display *dpy,

Pixmap pid,

unsigned int width,

unsigned int height)

Check if the display supports either ARGB or themes, and also if the image size fits within the

maximum cursor size (64 pixels). If so, create a bitmap of the specified size, and cache the result

in Xcursor, identifying it with the Pixmap-id (pid) value.

void XcursorNoticePutBitmap (

Display *dpy,

Drawable draw,

XImage *image)

Update the image contents in the bitmap specified by the draw value (a Pixmap-id). The bitmap

must have been created by XcursorNoticeCreateBitmap.

Cursor XcursorTryShapeBitmapCursor (

Display *dpy,

Pixmap source,

Pixmap mask,

XColor *foreground,

XColor *background,

unsigned int x,

unsigned int y)

If the display supports either ARGB or themes, try to load a cursor into Xcursor’s cache using the

source parameter as a Pixmap-id. The source may no longer be in the cache. Xcursor uses the

hash value to identify the desired image.

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

Cursor XcursorTryShapeCursor (

Display *dpy,

Font source_font,

Font mask_font,

unsigned int source_char,

unsigned int mask_char,

XColor _Xconst *foreground,

XColor _Xconst *background)

If the display supports either ARGB or themes, try to load a cursor into Xcursor’s cache using the

source_char parameter as a shape. Using

+o the default size from XcursorGetDefaultSize,

+o the default theme from XcursorGetTheme, and

+o the source_char parameter as a shape,

Xcursor calls XcursorShapeLoadImages to load the cursor images. If successful, Xcursor uses

XcursorImagesLoadCursor to load the cursor information.

Display Information APIs
XcursorBool XcursorSupportsARGB (

Display *dpy)

Returns true if the display supports ARGB cursors. Otherwise, cursors will be mapped to a core X

cursor.

XcursorBool XcursorSupportsAnim (

Display *dpy)

Returns true if the display supports animated cursors. Otherwise, cursors will be mapped to a core

X cursor.

XcursorBool XcursorSetDefaultSize (

Display *dpy,

int size)

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

Sets the default size for cursors on the specified display. When loading cursors, those whose

nominal size is closest to this size will be preferred.

int XcursorGetDefaultSize (

Display *dpy)

Gets the default cursor size.

XcursorBool XcursorSetTheme (

Display *dpy,

const char *theme)

Sets the current theme name.

char *XcursorGetTheme (

Display *dpy)

Gets the current theme name.

XcursorBool XcursorGetThemeCore (

Display *dpy)

XcursorBool XcursorSetThemeCore (

Display *dpy,

XcursorBool theme_core)

Get or set property which tells Xcursor whether to enable themes for core cursors.

ENVIRONMENT VARIABLES
Environment variables can be used to override resource settings, which in turn override compiled-in

default values.

Some of the environment variables recognized by Xcursor are booleans, specified as follows:

true for "t", "1", "y" or "on"

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

false for "f", "0", "n" or "off"

Xcursor ignores other values for these booleans.

HOME Xcursor interprets "~" in the search list as the home directory, using this variable

rather than the password database.

XCURSOR_ANIM
If the display supports the Render CreateCursor request, and the Render feature is

enabled, disable animated cursors if the environment variable is false.

If the environment variable is not given, Xcursor uses the resource Xcursor.anim.

XCURSOR_CORE
If the display supports the Render CreateCursor request disable the Render feature if

the environment variable is false.

If the environment variable is not given, Xcursor uses the resource Xcursor.core.

XCURSOR_DISCOVER
If the variable is set, Xcursor turns on a logging feature. It displays the hash value

and the image so that users can see which cursor name is associated with each

image.

There is no corresponding resource setting.

XCURSOR_DITHER
This variable sets the desired dither.

If the environment variable is not given, Xcursor uses the resource Xcursor.dither.

If neither environment variable or resource is found, Xcursor uses "threshold"

These are the recognized values:

diffuse

median

ordered

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

threshold

XCURSOR_PATH
This variable sets the list of paths in which to search for cursors, rather than the

compiled-in default list.

Directories in this path are separated by colons (:).

XCURSOR_SIZE
This variable sets the desired cursor size, in pixels.

If the environment variable is not given, Xcursor tries the Xcursor.size resource.

If no size is given, whether by environment variable or resource setting, Xcursor

next tries the Xft.dpi resource setting to guess the size of a 16-point cursor.

Finally, if Xft.dpi is not set, Xcursor uses the display height, dividing by 48

(assuming that the height is 768).

XCURSOR_THEME
This variable selects the desired theme.

If the environment variable is not given, Xcursor tries the Xcursor.theme resource.

If neither environment variable or resource is found, Xcursor uses the default theme.

XCURSOR_THEME_CORE
Enables themes for core cursors if the environment variable is true.

If the environment variable is not given, Xcursor tries the Xcursor.theme_core
resource.

An application can enable or disable themes using XcursorSetThemeCore.

SEE ALSO
XCreateRenderCursor(3), XCreatePixmapCursor(3), and XCreateFontCursor(3)

as well as

Icon Theme Specification

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

https://specifications.freedesktop.org/icon-theme-spec/

RESTRICTIONS
Xcursor will probably change radically in the future; weak attempts will be made to retain some level

of source-file compatibility.

AUTHOR
Keith Packard

XCURSOR(3) X Version 11 XCURSOR(3)

X Version 11 libXcursor 1.2.2 XCURSOR(3)

