
NAME
XkbGetKeyboardByName - Build a new keyboard description from a set of named components, and to

optionally have the server use the resulting description to replace an active one

SYNOPSIS
XkbDescPtr XkbGetKeyboardByName (Display *dpy, unsigned int device_spec,

XkbComponentNamesPtr names, unsigned int want, unsigned int need, Bool load);

ARGUMENTS
dpy connection to X server

device_spec

device ID, or XkbUseCoreKbd

names

names of components to fetch

want

desired structures in returned record

need

mandatory structures in returned record

load

True => load into device_spec

DESCRIPTION
A client may request that the server fetch one or more components from its database and use those

components to build a new server keyboard description. The new keyboard description may be built

from scratch, or it may be built starting with the current keyboard description for a particular device.

Once the keyboard description is built, all or part of it may be returned to the client. The parts returned

to the client need not include all of the parts used to build the description. At the time it requests the

server to build a new keyboard description, a client may also request that the server use the new

description internally to replace the current keyboard description for a specific device, in which case

the behavior of the device changes accordingly.

To build a new keyboard description from a set of named components, and to optionally have the

server use the resulting description to replace an active one, use XkbGetKeyboardByName.

names contains a set of expressions describing the keyboard components the server should use to build

XkbGetKeyboardByName(3) XKB FUNCTIONS XkbGetKeyboardByName(3)

X Version 11 libX11 1.8.7 XkbGetKeyboardByName(3)



the new keyboard description. want and need are bit fields describing the parts of the resulting

keyboard description that should be present in the returned XkbDescRec.

The individual fields in names are component expressions composed of keyboard component names

(no wildcarding as may be used in XkbListComponents), the special component name symbol ‘%’, and

the special operator characters ‘+’ and ‘|’. A component expression is parsed left to right, as follows:

+o The special component name "computed" may be used in keycodes component expressions and

refers to a component consisting of a set of keycodes computed automatically by the server as

needed.

+o The special component name "canonical" may be used in types component expressions and

refers to a partial component defining the four standard key types: ALPHABETIC,

ONE_LEVEL, TWO_LEVEL, and KEYPAD.

+o The special component name ‘%’ refers to the keyboard description for the device specified in

device_spec or the keymap names component. If a keymap names component is specified that

does not begin with ‘+’ or ‘|’ and does not contain ‘%’, then ‘%’ refers to the description

generated by the keymap names component. Otherwise, it refers to the keyboard description for

device_spec.

+o The ‘+’ operator specifies that the following component should override the currently assembled

description; any definitions that are present in both components are taken from the second.

+o The ‘|’ operator specifies that the next specified component should augment the currently

assembled description; any definitions that are present in both components are taken from the

first.

+o If the component expression begins with an operator, a leading ‘%’ is implied.

+o If any unknown or illegal characters appear anywhere in the expression, the entire expression is

invalid and is ignored.

For example, if names->symbols contained the expression "+de", it specifies that the default

member of the "de" class of symbols should be applied to the current keyboard mapping,

overriding any existing definitions (it could also be written "+de(default)").

Here is a slightly more involved example: the expression "acme(ascii)+de(basic)|iso9995-3"

constructs a German (de) mapping for the ASCII keyboard supplied by the "acme" vendor. The

XkbGetKeyboardByName(3) XKB FUNCTIONS XkbGetKeyboardByName(3)

X Version 11 libX11 1.8.7 XkbGetKeyboardByName(3)



new definition begins with the symbols for the ASCII keyboard for Acme (acme(ascii)),

overrides them with definitions for the basic German keyboard (de(basic)), and then applies the

definitions from the default iso9995-3 keyboard (iso9995-3) to any undefined keys or groups of

keys (part three of the iso9995 standard defines a common set of bindings for the secondary

group, but allows national layouts to override those definitions where necessary).

NOTE The interpretation of the above expression components (acme, ascii, de, basic, iso9995-3)

is not defined by Xkb; only the operations and their ordering are.

Note that the presence of a keymap names component that does not contain ‘%’ (either explicit

or implied by virtue of an expression starting with an operator) indicates a description that is

independent of the keyboard description for the device specified in device_spec. The same is

true of requests in which the keymap names component is empty and all five other names

components contain expressions void of references to ‘%’. Requests of this form allow you to

deal with keyboard definitions independent of any actual device.

The server parses all non-NULL fields in names and uses them to build a keyboard description.

However, before parsing the expressions in names, the server ORs the bits in want and need

together and examines the result in relationship to the expressions in names. Table 1 identifies

the components that are required for each of the possible bits in want or need. If a required

component has not been specified in the names structure (the corresponding field is NULL), the

server substitutes the expression "%", resulting in the component values being taken from

device_spec. In addition, if load is True, the server modifies names if necessary (again using a

"%" entry) to ensure all of the following fields are non-NULL: types, keycodes, symbols, and

compat.

Table 1 Want and Need Mask Bits and Required Names

Components

----------------------------------------------------------------------------------------------------------------------

want or need mask Required names value

bit Components

----------------------------------------------------------------------------------------------------------------------

XkbGBN_TypesMask Types (1L<<0)

XkbGBN_CompatMapMask Compat (1L<<1)

XkbGBN_ClientSymbolsMask Types + Symbols + (1L<<2)

Keycodes

XkbGBN_ServerSymbolsMask Types + Symbols + (1L<<3)

Keycodes

XkbGBN_SymbolsMask Symbols (1L<<1)

XkbGBN_IndicatorMapMask Compat (1L<<4)

XkbGetKeyboardByName(3) XKB FUNCTIONS XkbGetKeyboardByName(3)

X Version 11 libX11 1.8.7 XkbGetKeyboardByName(3)



XkbGBN_KeyNamesMask Keycodes (1L<<5)

XkbGBN_GeometryMask Geometry (1L<<6)

XkbGBN_OtherNamesMask Types + Symbols + Keycodes + Compat + Geometry(1L<<7)

XkbGBN_AllComponentsMask (0xff)

need specifies a set of keyboard components that the server must be able to resolve in order for

XkbGetKeyboardByName to succeed; if any of the components specified in need cannot be

successfully resolved, XkbGetKeyboardByName fails.

want specifies a set of keyboard components that the server should attempt to resolve, but that

are not mandatory. If the server is unable to resolve any of these components,

XkbGetKeyboardByName still succeeds. Bits specified in want that are also specified in need

have no effect in the context of want.

If load is True, the server updates its keyboard description for device_spec to match the result of

the keyboard description just built. If load is False, the server’s description for device

device_spec is not updated. In all cases, the parts specified by want and need from the just-built

keyboard description are returned.

The names structure in an XkbDescRec keyboard description record contains one field for each

of the five component types used to build a keyboard description. When a keyboard description

is built from a set of database components, the corresponding fields in this names structure are

set to match the expressions used to build the component.

Building a New Keyboard Description from the Server Database

The information returned to the client in the XkbDescRec is essentially the result of a series of

calls to extract information from a fictitious device whose description matches the one just built.

The calls corresponding to each of the mask bits are summarized in Table 2, together with the

XkbDescRec components that are filled in.

Table 2 XkbDescRec Components Returned for Values of Want &

Needs

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Request Fills in Xkb Equivalent Function

(want+need) components Call

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

XkbGBN_TypesMask map.types XkbGetUpdatedMap(dpy, XkbTypesMask,

Xkb)

XkbGetKeyboardByName(3) XKB FUNCTIONS XkbGetKeyboardByName(3)

X Version 11 libX11 1.8.7 XkbGetKeyboardByName(3)



XkbGBN_ServerSymbolsMask server XkbGetUpdatedMap(dpy,

XkbAllClientInfoMask,

Xkb)

XkbGBN_ClientSymbolsMask map, including

map.types

XkbGetUpdatedMap(dpy, XkbAllServerInfoMask, Xkb)

XkbGBN_IndicatorMaps indicators XkbGetIndicatorMap(dpy,

XkbAllIndicators,

Xkb)

XkbGBN_CompatMapMask compat XkbGetCompatMap(dpy, XkbAllCompatMask,

XkbGBN_GeometryMask geom XkbGetGeometry(dpy,

Xkb)

XkbGBN_KeyNamesMask names.keys XkbGetNames(dpy, XkbKeyNamesMask

|

names.key_aliases XkbKeyAliasesMask,

Xkb)

XkbGBN_OtherNamesMask names.keycodes XkbGetNames(dpy, XkbAllNamesMask

&

names.geometry ~(XkbKeyNamesMask |

XkbKeyAliasesMask),

names.symbols Xkb)

names.types

map.types[*].lvl_names[*]

names.compat

names.vmods

names.indicators

names.groups

names.radio_groups

names.phys_symbols

There is no way to determine which components specified in want (but not in need) were

actually fetched, other than breaking the call into successive calls to XkbGetKeyboardByName

and specifying individual components.

XkbGetKeyboardByName always sets min_key_code and max_key_code in the returned

XkbDescRec structure.

XkbGetKeyboardByName is synchronous; it sends the request to the server to build a new

keyboard description and waits for the reply. If successful, the return value is non-NULL.

XkbGetKeyboardByName generates a BadMatch protocol error if errors are encountered when

XkbGetKeyboardByName(3) XKB FUNCTIONS XkbGetKeyboardByName(3)

X Version 11 libX11 1.8.7 XkbGetKeyboardByName(3)



building the keyboard description.

STRUCTURES
The complete description of an Xkb keyboard is given by an XkbDescRec. The component structures

in the XkbDescRec represent the major Xkb components outlined in Figure 1.1.

typedef struct {

struct _XDisplay * display; /* connection to X server */

unsigned short flags; /* private to Xkb, do not modify */

unsigned short device_spec; /* device of interest */

KeyCode min_key_code; /* minimum keycode for device */

KeyCode max_key_code; /* maximum keycode for device */

XkbControlsPtr ctrls; /* controls */

XkbServerMapPtr server; /* server keymap */

XkbClientMapPtr map; /* client keymap */

XkbIndicatorPtr indicators; /* indicator map */

XkbNamesPtr names; /* names for all components */

XkbCompatMapPtr compat; /* compatibility map */

XkbGeometryPtr geom; /* physical geometry of keyboard */

} XkbDescRec, *XkbDescPtr;

The display field points to an X display structure. The flags field is private to the library: modifying

flags may yield unpredictable results. The device_spec field specifies the device identifier of the

keyboard input device, or XkbUseCoreKeyboard, which specifies the core keyboard device. The

min_key_code and max_key_code fields specify the least and greatest keycode that can be returned by

the keyboard.

Each structure component has a corresponding mask bit that is used in function calls to indicate that the

structure should be manipulated in some manner, such as allocating it or freeing it. These masks and

their relationships to the fields in the XkbDescRec are shown in Table 3.

Table 3 Mask Bits for

XkbDescRec

---------------------------------------------------------------------

Mask XkbDescRec FieldValue

Bit

---------------------------------------------------------------------

XkbControlsMask ctrls (1L<<0)

XkbServerMapMask server (1L<<1)

XkbGetKeyboardByName(3) XKB FUNCTIONS XkbGetKeyboardByName(3)

X Version 11 libX11 1.8.7 XkbGetKeyboardByName(3)



XkbIClientMapMask map (1L<<2)

XkbIndicatorMapMask indicators (1L<<3)

XkbNamesMask names (1L<<4)

XkbCompatMapMask compat (1L<<5)

XkbGeometryMask geom (1L<<6)

XkbAllComponentsMaskAll (0x7f)

Fields

DIAGNOSTICS
BadMatch A compatible version of Xkb was not available in the server or an argument has

correct type and range, but is otherwise invalid

SEE ALSO
XkbListComponents(3)

XkbGetKeyboardByName(3) XKB FUNCTIONS XkbGetKeyboardByName(3)

X Version 11 libX11 1.8.7 XkbGetKeyboardByName(3)


