
NAME
add_wch, wadd_wch, mvadd_wch, mvwadd_wch, echo_wchar, wecho_wchar - add a curses complex

character to a window and advance the cursor

SYNOPSIS
#include <curses.h>

int add_wch(const cchar_t *wch);
int wadd_wch(WINDOW *win, const cchar_t *wch);
int mvadd_wch(int y, int x, const cchar_t *wch);
int mvwadd_wch(WINDOW *win, int y, int x, const cchar_t *wch);

int echo_wchar(const cchar_t *wch);
int wecho_wchar(WINDOW *win, const cchar_t *wch);

DESCRIPTION
add_wch

The add_wch, wadd_wch, mvadd_wch, and mvwadd_wch functions put the complex character wch

into the given window at its current position, which is then advanced. These functions perform

wrapping and special-character processing as follows:

+o If wch refers to a spacing character, then any previous character at that location is removed. A

new character specified by wch is placed at that location with rendition specified by wch. The

cursor then advances after this spacing character, to prepare for writing the next character on the

screen.

The newly added spacing character is the base of the active complex character. Subsequent non-

spacing characters can be combined with this base until another spacing character is written to the

screen, or the cursor is moved, e.g., using wmove.

+o If wch refers to a non-spacing character, it is appended to the active complex character, retaining

the previous characters at that location. The rendition specified by wch is ignored.

The cursor is not advanced after adding a non-spacing character. Subsequent calls to add non-

spacing characters will update the same position.

+o If the character part of wch is a tab, newline, backspace or other control character, the window is

updated and the cursor moves as if addch were called.

echo_wchar

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)



The echo_wchar function is functionally equivalent to a call to add_wch followed by a call to

refresh(3X). Similarly, the wecho_wchar is functionally equivalent to a call to wadd_wch followed by

a call to wrefresh. The knowledge that only a single character is being output is taken into

consideration and, for non-control characters, a considerable performance gain might be seen by using

the *echo* functions instead of their equivalents.

Line Graphics
Like addch(3X), addch_wch accepts symbols which make it simple to draw lines and other frequently

used special characters. These symbols correspond to the same VT100 line-drawing set as addch(3X).

UnicodeASCII acsc
ACS Default DefaultCharGlyph
Name Name
----------------------------------------------------------------------------------------------------------------------------------------

WACS_BLOCK 0x25ae # 0 solid square

block

WACS_BOARD 0x2592 # h board of

squares

WACS_BTEE 0x2534 + v bottom

tee

WACS_BULLET 0x00b7 o ~ bullet

WACS_CKBOARD 0x2592 : a checker board

(stipple)

WACS_DARROW 0x2193 v . arrow pointing

down

WACS_DEGREE 0x00b0 ’ f degree

symbol

WACS_DIAMOND 0x25c6 + ‘ diamond

WACS_GEQUAL 0x2265 > > greater-than-or-equal-to

WACS_HLINE 0x2500 - q horizontal

line

WACS_LANTERN 0x2603 # i lantern

symbol

WACS_LARROW 0x2190 < , arrow pointing

left

WACS_LEQUAL 0x2264 < y less-than-or-equal-to

WACS_LLCORNER 0x2514 + m lower left-hand

corner

WACS_LRCORNER0x2518 + j lower right-hand

corner

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)



WACS_LTEE 0x2524 + t left

tee

WACS_NEQUAL 0x2260 ! | not-equal

WACS_PI 0x03c0 * { greek

pi

WACS_PLMINUS 0x00b1 # g plus/minus

WACS_PLUS 0x253c + n plus

WACS_RARROW 0x2192 > + arrow pointing

right

WACS_RTEE 0x251c + u right

tee

WACS_S1 0x23ba - o scan line

1

WACS_S3 0x23bb - p scan line

3

WACS_S7 0x23bc - r scan line

7

WACS_S9 0x23bd _ s scan line

9

WACS_STERLING 0x00a3 f } pound-sterling

symbol

WACS_TTEE 0x252c + w top

tee

WACS_UARROW 0x2191 ^ - arrow pointing

up

WACS_ULCORNER0x250c + l upper left-hand

corner

WACS_URCORNER0x2510 + k upper right-hand

corner

WACS_VLINE 0x2502 | x vertical

line

The wide-character configuration of ncurses also defines symbols for thick lines (acsc "J" to "V"):

UnicodeASCII acsc
ACS Default DefaultCharGlyph
Name Name
---------------------------------------------------------------------------------------------------------------------------------------

WACS_T_BTEE 0x253b + V thick tee pointing

up

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)



WACS_T_HLINE 0x2501 - Q thick horizontal

line

WACS_T_LLCORNER 0x2517 + M thick lower left

corner

WACS_T_LRCORNER0x251b + J thick lower right

corner

WACS_T_LTEE 0x252b + T thick tee pointing

right

WACS_T_PLUS 0x254b + N thick large

plus

WACS_T_RTEE 0x2523 + U thick tee pointing

left

WACS_T_TTEE 0x2533 + W thick tee pointing

down

WACS_T_ULCORNER0x250f + L thick upper left

corner

WACS_T_URCORNER0x2513 + K thick upper right

corner

WACS_T_VLINE 0x2503 | X thick vertical

line

and for double-lines (acsc "A" to "I"):

UnicodeASCII acsc
ACS Default DefaultCharGlyph
Name Name
----------------------------------------------------------------------------------------------------------------------------------------

WACS_D_BTEE 0x2569 + H double tee pointing

up

WACS_D_HLINE 0x2550 - R double horizontal

line

WACS_D_LLCORNER 0x255a + D double lower left

corner

WACS_D_LRCORNER0x255d + A double lower right

corner

WACS_D_LTEE 0x2560 + F double tee pointing

right

WACS_D_PLUS 0x256c + E double large

plus

WACS_D_RTEE 0x2563 + G double tee pointing

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)



left

WACS_D_TTEE 0x2566 + I double tee pointing

down

WACS_D_ULCORNER0x2554 + C double upper left

corner

WACS_D_URCORNER0x2557 + B double upper right

corner

WACS_D_VLINE 0x2551 | Y double vertical

line

Unicode’s descriptions for these characters differs slightly from ncurses, by introducing the term

"light" (along with less important details). Here are its descriptions for the normal, thick, and double

horizontal lines:

+o U+2500 BOX DRAWINGS LIGHT HORIZONTAL

+o U+2501 BOX DRAWINGS HEAVY HORIZONTAL

+o U+2550 BOX DRAWINGS DOUBLE HORIZONTAL

RETURN VALUE
All routines return the integer ERR upon failure and OK on success.

X/Open Curses does not specify any error conditions. This implementation returns an error

+o if the window pointer is null or

+o if it is not possible to add a complete character in the window.

The latter may be due to different causes:

+o If scrollok(3X) is not enabled, writing a character at the lower right margin succeeds. However,

an error is returned because it is not possible to wrap to a new line.

+o If an error is detected when converting a multibyte character to a sequence of bytes, or if it is not

possible to add all of the resulting bytes in the window, an error is returned.

Functions prefixed with "mv" first perform cursor movement and fail if the position (y, x) is outside the

window boundaries.

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)



NOTES
Note that add_wch, mvadd_wch, mvwadd_wch, and echo_wchar may be macros.

PORTABILITY
These functions are described in X/Open Curses, Issue 4. The defaults specified for line-drawing

characters apply in the POSIX locale.

WACS Symbols
X/Open Curses makes it clear that the WACS_ symbols should be defined as a pointer to cchar_t data,

e.g., in the discussion of border_set. A few implementations are problematic:

+o NetBSD curses defines the symbols as a wchar_t within a cchar_t.

+o HP-UX curses equates some of the ACS_ symbols to the analogous WACS_ symbols as if the

ACS_ symbols were wide characters. The misdefined symbols are the arrows and other symbols

which are not used for line-drawing.

X/Open Curses does not specify symbols for thick- or double-lines. SVr4 curses implementations

defined their line-drawing symbols in terms of intermediate symbols. This implementation extends

those symbols, providing new definitions which are not in the SVr4 implementations.

Not all Unicode-capable terminals provide support for VT100-style alternate character sets (i.e., the

acsc capability), with their corresponding line-drawing characters. X/Open Curses did not address the

aspect of integrating Unicode with line-drawing characters. Existing implementations of Unix curses

(AIX, HP-UX, Solaris) use only the acsc character-mapping to provide this feature. As a result, those

implementations can only use single-byte line-drawing characters. ncurses 5.3 (2002) provided a table

of Unicode values to solve these problems. NetBSD curses incorporated that table in 2010.

In this implementation, the Unicode values are used instead of the terminal description’s acsc mapping

as discussed in ncurses(3X) for the environment variable NCURSES_NO_UTF8_ACS. In contrast, for

the same cases, the line-drawing characters described in addch(3X) will use only the ASCII default

values.

Having Unicode available does not solve all of the problems with line-drawing for curses:

+o The closest Unicode equivalents to the VT100 graphics S1, S3, S7 and S9 frequently are not

displayed at the regular intervals which the terminal used.

+o The lantern is a special case. It originated with the AT&T 4410 terminal in the early 1980s.

There is no accessible documentation depicting the lantern symbol on the AT&T terminal.

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)



Lacking documentation, most readers assume that a storm lantern was intended. But there are

several possibilities, all with problems.

Unicode 6.0 (2010) does provide two lantern symbols: U+1F383 and U+1F3EE. Those were not

available in 2002, and are irrelevant since they lie outside the BMP and as a result are not

generally available in terminals. They are not storm lanterns, in any case.

Most storm lanterns have a tapering glass chimney (to guard against tipping); some have a wire

grid protecting the chimney.

For the tapering appearance, <?> U+2603 was adequate. In use on a terminal, no one can tell

what the image represents. Unicode calls it a snowman.

Others have suggested these alternatives: <section> U+00A7 (section mark), <Theta> U+0398

(theta), <Phi> U+03A6 (phi), <delta> U+03B4 (delta), <?> U+2327 (x in a rectangle), <?>

U+256C (forms double vertical and horizontal), and <?> U+2612 (ballot box with x).

Complex Characters
The complex character type cchar_t can store more than one wide character (wchar_t). The X/Open

Curses description does not mention this possibility, describing only the cases where wch is a spacing

character or a non-spacing character.

This implementation assumes that wch is constructed using setcchar(3X), and in turn that the result

+o contains at most one spacing character in the beginning of its list of wide characters, and zero or

more non-spacing characters or

+o may hold one non-spacing character.

In the latter case, ncurses adds the non-spacing character to the active (base) spacing character.

TABSIZE
The TABSIZE variable is implemented in SVr4 and other versions of curses, but is not specified by

X/Open Curses (see curs_variables(3X)).

SEE ALSO
curs_addch(3X) describes comparable functions of the ncurses library in its non-wide-character

configuration.

curses(3X), curs_addwstr(3X), curs_add_wchstr(3X), curs_attr(3X), curs_clear(3X),

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)



curs_getcchar(3X), curs_outopts(3X), curs_refresh(3X), curs_variables(3X), putwc(3)

curs_add_wch(3X) Library calls curs_add_wch(3X)

ncurses 6.5 2024-04-20 curs_add_wch(3X)


