
NAME
aio - asynchronous I/O

DESCRIPTION
The aio facility provides system calls for asynchronous I/O. Asynchronous I/O operations are not

completed synchronously by the calling thread. Instead, the calling thread invokes one system call to

request an asynchronous I/O operation. The status of a completed request is retrieved later via a

separate system call.

Asynchronous I/O operations on some file descriptor types may block an AIO daemon indefinitely

resulting in process and/or system hangs. Operations on these file descriptor types are considered

"unsafe" and disabled by default. They can be enabled by setting the vfs.aio.enable_unsafe sysctl node

to a non-zero value.

Asynchronous I/O operations on sockets, raw disk devices, and regular files on local filesystems do not

block indefinitely and are always enabled.

The aio facility uses kernel processes (also known as AIO daemons) to service most asynchronous I/O

requests. These processes are grouped into pools containing a variable number of processes. Each pool

will add or remove processes to the pool based on load. Pools can be configured by sysctl nodes that

define the minimum and maximum number of processes as well as the amount of time an idle process

will wait before exiting.

One pool of AIO daemons is used to service asynchronous I/O requests for sockets. These processes are

named "soaiod<N>". The following sysctl nodes are used with this pool:

kern.ipc.aio.num_procs

The current number of processes in the pool.

kern.ipc.aio.target_procs

The minimum number of processes that should be present in the pool.

kern.ipc.aio.max_procs

The maximum number of processes permitted in the pool.

kern.ipc.aio.lifetime

The amount of time a process is permitted to idle in clock ticks. If a process is idle for this

amount of time and there are more processes in the pool than the target minimum, the process

will exit.

AIO(4) FreeBSD Kernel Interfaces Manual AIO(4)

FreeBSD 14.0-RELEASE-p6 January 2, 2021 FreeBSD 14.0-RELEASE-p6



A second pool of AIO daemons is used to service all other asynchronous I/O requests except for I/O

requests to raw disks. These processes are named "aiod<N>". The following sysctl nodes are used with

this pool:

vfs.aio.num_aio_procs

The current number of processes in the pool.

vfs.aio.target_aio_procs

The minimum number of processes that should be present in the pool.

vfs.aio.max_aio_procs

The maximum number of processes permitted in the pool.

vfs.aio.aiod_lifetime

The amount of time a process is permitted to idle in clock ticks. If a process is idle for this

amount of time and there are more processes in the pool than the target minimum, the process

will exit.

Asynchronous I/O requests for raw disks are queued directly to the disk device layer after temporarily

wiring the user pages associated with the request. These requests are not serviced by any of the AIO

daemon pools.

Several limits on the number of asynchronous I/O requests are imposed both system-wide and per-

process. These limits are configured via the following sysctls:

vfs.aio.max_buf_aio

The maximum number of queued asynchronous I/O requests for raw disks permitted for a single

process. Asynchronous I/O requests that have completed but whose status has not been retrieved

via aio_return(2) or aio_waitcomplete(2) are not counted against this limit.

vfs.aio.num_buf_aio

The number of queued asynchronous I/O requests for raw disks system-wide.

vfs.aio.max_aio_queue_per_proc

The maximum number of asynchronous I/O requests for a single process serviced concurrently

by the default AIO daemon pool.

vfs.aio.max_aio_per_proc

The maximum number of outstanding asynchronous I/O requests permitted for a single process.

This includes requests that have not been serviced, requests currently being serviced, and

AIO(4) FreeBSD Kernel Interfaces Manual AIO(4)

FreeBSD 14.0-RELEASE-p6 January 2, 2021 FreeBSD 14.0-RELEASE-p6



requests that have completed but whose status has not been retrieved via aio_return(2) or

aio_waitcomplete(2).

vfs.aio.num_queue_count

The number of outstanding asynchronous I/O requests system-wide.

vfs.aio.max_aio_queue

The maximum number of outstanding asynchronous I/O requests permitted system-wide.

Asynchronous I/O control buffers should be zeroed before initializing individual fields. This ensures all

fields are initialized.

All asynchronous I/O control buffers contain a sigevent structure in the aio_sigevent field which can be

used to request notification when an operation completes.

For SIGEV_KEVENT notifications, the sigevent’s sigev_notify_kqueue field should contain the

descriptor of the kqueue that the event should be attached to, its sigev_notify_kevent_flags field may

contain EV_ONESHOT, EV_CLEAR, and/or EV_DISPATCH, and its sigev_notify field should be set

to SIGEV_KEVENT. The posted kevent will contain:

Member Value
ident asynchronous I/O control buffer pointer

filter EVFILT_AIO

flags EV_EOF

udata value stored in aio_sigevent.sigev_value

For SIGEV_SIGNO and SIGEV_THREAD_ID notifications, the information for the queued signal will

include SI_ASYNCIO in the si_code field and the value stored in sigevent.sigev_value in the si_value

field.

For SIGEV_THREAD notifications, the value stored in aio_sigevent.sigev_value is passed to the

aio_sigevent.sigev_notify_function as described in sigevent(3).

SEE ALSO
aio_cancel(2), aio_error(2), aio_read(2), aio_readv(2), aio_return(2), aio_suspend(2),

aio_waitcomplete(2), aio_write(2), aio_writev(2), lio_listio(2), sigevent(3), sysctl(8)

HISTORY
The aio facility appeared as a kernel option in FreeBSD 3.0. The aio kernel module appeared in

FreeBSD 5.0. The aio facility was integrated into all kernels in FreeBSD 11.0.

AIO(4) FreeBSD Kernel Interfaces Manual AIO(4)

FreeBSD 14.0-RELEASE-p6 January 2, 2021 FreeBSD 14.0-RELEASE-p6


