
NAME
arc4random, arc4random_buf, arc4random_uniform - random number generator

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

uint32_t

arc4random(void);

void

arc4random_buf(void *buf, size_t nbytes);

uint32_t

arc4random_uniform(uint32_t upper_bound);

DESCRIPTION
This family of functions provides higher quality data than those described in rand(3), random(3), and

rand48(3).

Use of these functions is encouraged for almost all random number consumption because the other

interfaces are deficient in either quality, portability, standardization, or availability. These functions can

be called in almost all coding environments, including pthread(3) and chroot(2).

High quality 32-bit pseudo-random numbers are generated very quickly. On each call, a cryptographic

pseudo-random number generator is used to generate a new result. One data pool is used for all

consumers in a process, so that consumption under program flow can act as additional stirring. The

subsystem is re-seeded from the kernel random(4) subsystem using getentropy(3) on a regular basis, and

also upon fork(2).

The arc4random() function returns a single 32-bit value. The arc4random() function returns pseudo-

random numbers in the range of 0 to (2**32)-1, and therefore has twice the range of rand(3) and

random(3).

arc4random_buf() fills the region buf of length nbytes with random data.

arc4random_uniform() will return a single 32-bit value, uniformly distributed but less than

upper_bound. This is recommended over constructions like "arc4random() % upper_bound" as it avoids

ARC4RANDOM(3) FreeBSD Library Functions Manual ARC4RANDOM(3)

FreeBSD 14.2-RELEASE April 13, 2020 FreeBSD 14.2-RELEASE

"modulo bias" when the upper bound is not a power of two. In the worst case, this function may

consume multiple iterations to ensure uniformity; see the source code to understand the problem and

solution.

RETURN VALUES
These functions are always successful, and no return value is reserved to indicate an error.

EXAMPLES
The following produces a drop-in replacement for the traditional rand() and random() functions using

arc4random():

#define foo4random() (arc4random_uniform(RAND_MAX + 1))

SEE ALSO
rand(3), rand48(3), random(3)

Daniel J. Bernstein, ChaCha, a variant of Salsa20, http://cr.yp.to/papers.html#chacha, 2008-01-28,

Document ID: 4027b5256e17b9796842e6d0f68b0b5e.

HISTORY
These functions first appeared in OpenBSD 2.1.

The original version of this random number generator used the RC4 (also known as ARC4) algorithm.

In OpenBSD 5.5 it was replaced with the ChaCha20 cipher, and it may be replaced again in the future as

cryptographic techniques advance. A good mnemonic is "A Replacement Call for Random".

The arc4random() random number generator was first introduced in FreeBSD 2.2.6. The ChaCha20

based implementation was introduced in FreeBSD 12.0, with obsolete stir and addrandom interfaces

removed at the same time.

ARC4RANDOM(3) FreeBSD Library Functions Manual ARC4RANDOM(3)

FreeBSD 14.2-RELEASE April 13, 2020 FreeBSD 14.2-RELEASE

