
NAME
arch - Architecture-specific details

DESCRIPTION
Differences between CPU architectures and platforms supported by FreeBSD.

Introduction
This document is a quick reference of key ABI details of FreeBSD architecture ports. For full details

consult the processor-specific ABI supplement documentation.

If not explicitly mentioned, sizes are in bytes. The architecture details in this document apply to

FreeBSD 12.0 and later, unless otherwise noted.

FreeBSD uses a flat address space. Variables of types unsigned long, uintptr_t, and size_t and pointers

all have the same representation.

In order to maximize compatibility with future pointer integrity mechanisms, manipulations of pointers

as integers should be performed via uintptr_t or intptr_t and no other types. In particular, long and

ptrdiff_t should be avoided.

On some architectures, e.g., powerpc and AIM variants of powerpc64, the kernel uses a separate address

space. On other architectures, kernel and a user mode process share a single address space. The kernel

is located at the highest addresses.

On each architecture, the main user mode thread’s stack starts near the highest user address and grows

down.

FreeBSD architecture support varies by release. This table shows currently supported CPU architectures

along with the first FreeBSD release to support each architecture.

Architecture Initial Release
aarch64 11.0

amd64 5.1

armv6 10.0

armv7 12.0

i386 1.0

powerpc 6.0

powerpcspe 12.0

powerpc64 9.0

powerpc64le 13.0

ARCH(7) FreeBSD Miscellaneous Information Manual ARCH(7)

FreeBSD 14.0-RELEASE-p11 April 12, 2023 FreeBSD 14.0-RELEASE-p11



riscv64 12.0

Discontinued architectures are shown in the following table.

Architecture Initial Release Final Release
alpha 3.2 6.4

arm 6.0 12.x

armeb 8.0 11.4

ia64 5.0 10.4

mips 8.0 13.x

mipsel 9.0 13.x

mipselhf 12.0 13.x

mipshf 12.0 13.x

mipsn32 9.0 13.x

mips64 9.0 13.x

mips64el 9.0 13.x

mips64elhf 12.0 13.x

mips64hf 12.0 13.x

pc98 2.2 11.4

riscv64sf 12.0 13.x

sparc64 5.0 12.x

Type sizes
All FreeBSD architectures use some variant of the ELF (see elf(5)) Application Binary Interface (ABI)

for the machine processor. All supported ABIs can be divided into two groups:

ILP32 int, long, void * types machine representations all have 4-byte size.

LP64 int type machine representation uses 4 bytes, while long and void * are 8 bytes.

Some machines support more than one FreeBSD ABI. Typically these are 64-bit machines, where the

"native" LP64 execution environment is accompanied by the "legacy" ILP32 environment, which was

the historical 32-bit predecessor for 64-bit evolution. Examples are:

LP64 ILP32 counterpart
amd64 i386

powerpc64 powerpc

aarch64 armv6/armv7

aarch64 will support execution of armv6 or armv7 binaries if the CPU implements AArch32 execution

ARCH(7) FreeBSD Miscellaneous Information Manual ARCH(7)

FreeBSD 14.0-RELEASE-p11 April 12, 2023 FreeBSD 14.0-RELEASE-p11



state, however older armv4 and armv5 binaries aren’t supported.

On all supported architectures:

Type Size
short 2

int 4

long sizeof(void*)

long long 8

float 4

double 8

Integers are represented in two’s complement. Alignment of integer and pointer types is natural, that is,

the address of the variable must be congruent to zero modulo the type size. Most ILP32 ABIs, except

arm, require only 4-byte alignment for 64-bit integers.

Machine-dependent type sizes:

Architecture void * long double time_t
aarch64 8 16 8

amd64 8 16 8

armv6 4 8 8

armv7 4 8 8

i386 4 12 4

powerpc 4 8 8

powerpcspe 4 8 8

powerpc64 8 8 8

powerpc64le 8 8 8

riscv64 8 16 8

time_t is 8 bytes on all supported architectures except i386.

Endianness and Char Signedness
Architecture Endianness char Signedness
aarch64 little unsigned

amd64 little signed

armv6 little unsigned

armv7 little unsigned

i386 little signed

powerpc big unsigned

ARCH(7) FreeBSD Miscellaneous Information Manual ARCH(7)

FreeBSD 14.0-RELEASE-p11 April 12, 2023 FreeBSD 14.0-RELEASE-p11



powerpcspe big unsigned

powerpc64 big unsigned

powerpc64le little unsigned

riscv64 little signed

Page Size
Architecture Page Sizes
aarch64 4K, 2M, 1G

amd64 4K, 2M, 1G

armv6 4K, 1M

armv7 4K, 1M

i386 4K, 2M (PAE), 4M

powerpc 4K

powerpcspe 4K

powerpc64 4K

powerpc64le 4K

riscv64 4K, 2M, 1G

Floating Point
Architecture float, double long double
aarch64 hard soft, quad precision

amd64 hard hard, 80 bit

armv6 hard hard, double precision

armv7 hard hard, double precision

i386 hard hard, 80 bit

powerpc hard hard, double precision

powerpcspe hard hard, double precision

powerpc64 hard hard, double precision

powerpc64le hard hard, double precision

riscv64 hard hard, quad precision

Default Tool Chain
FreeBSD uses clang(1) as the default compiler on all supported CPU architectures, LLVM’s ld.lld(1) as

the default linker, and ELF Tool Chain binary utilities such as objcopy(1) and readelf(1).

MACHINE_ARCH vs MACHINE_CPUARCH vs MACHINE
MACHINE_CPUARCH should be preferred in Makefiles when the generic architecture is being tested.

MACHINE_ARCH should be preferred when there is something specific to a particular type of

architecture where there is a choice of many, or could be a choice of many. Use MACHINE when

referring to the kernel, interfaces dependent on a specific type of kernel or similar things like boot

ARCH(7) FreeBSD Miscellaneous Information Manual ARCH(7)

FreeBSD 14.0-RELEASE-p11 April 12, 2023 FreeBSD 14.0-RELEASE-p11



sequences.

MACHINE MACHINE_CPUARCH MACHINE_ARCH

arm64 aarch64 aarch64

amd64 amd64 amd64

arm arm armv6, armv7

i386 i386 i386

powerpc powerpc powerpc, powerpcspe, powerpc64, powerpc64le

riscv riscv riscv64

Predefined Macros
The compiler provides a number of predefined macros. Some of these provide architecture-specific

details and are explained below. Other macros, including those required by the language standard, are

not included here.

The full set of predefined macros can be obtained with this command:

cc -x c -dM -E /dev/null

Common type size and endianness macros:

Macro Meaning
__LP64__ 64-bit (8-byte) long and pointer, 32-bit (4-byte) int

__ILP32__ 32-bit (4-byte) int, long and pointer

BYTE_ORDER Either BIG_ENDIAN or LITTLE_ENDIAN. PDP11_ENDIAN is not used on

FreeBSD.

Architecture-specific macros:

Architecture Predefined macros
aarch64 __aarch64__

amd64 __amd64__, __x86_64__

armv6 __arm__, __ARM_ARCH >= 6

armv7 __arm__, __ARM_ARCH >= 7

i386 __i386__

powerpc __powerpc__

powerpcspe __powerpc__, __SPE__

powerpc64 __powerpc__, __powerpc64__

powerpc64le __powerpc__, __powerpc64__

riscv64 __riscv, __riscv_xlen == 64

ARCH(7) FreeBSD Miscellaneous Information Manual ARCH(7)

FreeBSD 14.0-RELEASE-p11 April 12, 2023 FreeBSD 14.0-RELEASE-p11



Compilers may define additional variants of architecture-specific macros. The macros above are

preferred for use in FreeBSD.

Important make(1) variables
Most of the externally settable variables are defined in the build(7) man page. These variables are not

otherwise documented and are used extensively in the build system.

MACHINE Represents the hardware platform. This is the same as the native platform’s

uname(1) -m output. It defines both the userland / kernel interface, as well as

the bootloader / kernel interface. It should only be used in these contexts.

Each CPU architecture may have multiple hardware platforms it supports

where MACHINE differs among them. It is used to collect together all the

files from config(8) to build the kernel. It is often the same as

MACHINE_ARCH just as one CPU architecture can be implemented by many

different hardware platforms, one hardware platform may support multiple

CPU architecture family members, though with different binaries. For

example, MACHINE of i386 supported the IBM-AT hardware platform while

the MACHINE of pc98 supported the Japanese company NEC’s PC-9801 and

PC-9821 hardware platforms. Both of these hardware platforms supported

only the MACHINE_ARCH of i386 where they shared a common ABI, except

for certain kernel / userland interfaces relating to underlying hardware

platform differences in bus architecture, device enumeration and boot

interface. Generally, MACHINE should only be used in src/sys and src/stand

or in system imagers or installers.

MACHINE_ARCH Represents the CPU processor architecture. This is the same as the native

platforms uname(1) -p output. It defines the CPU instruction family

supported. It may also encode a variation in the byte ordering of multi-byte

integers (endian). It may also encode a variation in the size of the integer or

pointer. It may also encode a ISA revision. It may also encode hard versus

soft floating point ABI and usage. It may also encode a variant ABI when the

other factors do not uniquely define the ABI. It, along with MACHINE,

defines the ABI used by the system. Generally, the plain CPU name specifies

the most common (or at least first) variant of the CPU. This is why powerpc

and powerpc64 imply ’big endian’ while ’armv6’ and ’armv7’ imply little

endian. If we ever were to support the so-called x32 ABI (using 32-bit

pointers on the amd64 architecture), it would most likely be encoded as

amd64-x32. It is unfortunate that amd64 specifies the 64-bit evolution of the

x86 platform (it matches the ’first rule’) as everybody else uses x86_64.

There is no standard name for the processor: each OS selects its own

ARCH(7) FreeBSD Miscellaneous Information Manual ARCH(7)

FreeBSD 14.0-RELEASE-p11 April 12, 2023 FreeBSD 14.0-RELEASE-p11



conventions.

MACHINE_CPUARCH Represents the source location for a given MACHINE_ARCH. It is generally

the common prefix for all the MACHINE_ARCH that share the same

implementation, though ’riscv’ breaks this rule. While amd64 and i386 are

closely related, MACHINE_CPUARCH is not x86 for them. The FreeBSD

source base supports amd64 and i386 with two distinct source bases living in

subdirectories named amd64 and i386 (though behind the scenes there’s some

sharing that fits into this framework).

CPUTYPE Sets the flavor of MACHINE_ARCH to build. It is used to optimize the build

for a specific CPU / core that the binaries run on. Generally, this does not

change the ABI, though it can be a fine line between optimization for specific

cases.

TARGET Used to set MACHINE in the top level Makefile for cross building. Unused

outside of that scope. It is not passed down to the rest of the build. Makefiles

outside of the top level should not use it at all (though some have their own

private copy for hysterical raisons).

TARGET_ARCH Used to set MACHINE_ARCH by the top level Makefile for cross building.

Like TARGET, it is unused outside of that scope.

SEE ALSO
src.conf(5), build(7)

HISTORY
An arch manual page appeared in FreeBSD 11.1.

ARCH(7) FreeBSD Miscellaneous Information Manual ARCH(7)

FreeBSD 14.0-RELEASE-p11 April 12, 2023 FreeBSD 14.0-RELEASE-p11


