
NAME
archive_entry_linkresolver, archive_entry_linkresolver_new, archive_entry_linkresolver_set_strategy,

archive_entry_linkresolver_free, archive_entry_linkify - hardlink resolver functions

LIBRARY
Streaming Archive Library (libarchive, -larchive)

SYNOPSIS
#include <archive_entry.h>

struct archive_entry_linkresolver *

archive_entry_linkresolver_new(void);

void

archive_entry_linkresolver_set_strategy(struct archive_entry_linkresolver *resolver, int format);

void

archive_entry_linkresolver_free(struct archive_entry_linkresolver *resolver);

void

archive_entry_linkify(struct archive_entry_linkresolver *resolver, struct archive_entry **entry,

struct archive_entry **sparse);

DESCRIPTION
Programs that want to create archives have to deal with hardlinks. Hardlinks are handled in different

ways by the archive formats. The basic strategies are:

1. Ignore hardlinks and store the body for each reference (old cpio, zip).

2. Store the body the first time an inode is seen (ustar, pax).

3. Store the body the last time an inode is seen (new cpio).

The archive_entry_linkresolver functions help by providing a unified interface and handling the

complexity behind the scene.

The archive_entry_linkresolver functions assume that archive_entry instances have valid nlinks, inode

and device values. The inode and device value is used to match entries. The nlinks value is used to

determined if all references have been found and if the internal references can be recycled.

ARCHIVE_ENTRY_LINKIFY(3) FreeBSD Library Functions Manual ARCHIVE_ENTRY_LINKIFY(3)

FreeBSD 14.0-RELEASE-p11 February 2, 2012 FreeBSD 14.0-RELEASE-p11

The archive_entry_linkresolver_new() function allocates a new link resolver. The instance can be freed

using archive_entry_linkresolver_free(). All deferred entries are flushed and the internal storage is

freed.

The archive_entry_linkresolver_set_strategy() function selects the optimal hardlink strategy for the

given format. The format code can be obtained from archive_format(3). The function can be called

more than once, but it is recommended to flush all deferred entries first.

The archive_entry_linkify() function is the core of archive_entry_linkresolver. The entry() argument

points to the archive_entry that should be written. Depending on the strategy one of the following

actions is taken:

1. For the simple archive formats *entry is left unmodified and *sparse is set to NULL.

2. For tar like archive formats, *sparse is set to NULL. If *entry is NULL, no action is taken. If the

hardlink count of *entry is larger than 1 and the file type is a regular file or symbolic link, the

internal list is searched for a matching inode. If such an inode is found, the link count is

decremented and the file size of *entry is set to 0 to notify that no body should be written. If no

such inode is found, a copy of the entry is added to the internal cache with a link count reduced by

one.

3. For new cpio like archive formats a value for *entry of NULL is used to flush deferred entries. In

that case *entry is set to an arbitrary deferred entry and the entry itself is removed from the internal

list. If the internal list is empty, *entry is set to NULL. In either case, *sparse is set to NULL and

the function returns. If the hardlink count of *entry is one or the file type is a directory or device,

*sparse is set to NULL and no further action is taken. Otherwise, the internal list is searched for a

matching inode. If such an inode is not found, the entry is added to the internal list, both *entry and

*sparse are set to NULL and the function returns. If such an inode is found, the link count is

decremented. If it remains larger than one, the existing entry on the internal list is swapped with

*entry after retaining the link count. The existing entry is returned in *entry. If the link count

reached one, the new entry is also removed from the internal list and returned in *sparse.

Otherwise *sparse is set to NULL.

The general usage is therefore:

1. For each new archive entry, call archive_entry_linkify().

2. Keep in mind that the entries returned may have a size of 0 now.

3. If *entry is not NULL, archive it.

ARCHIVE_ENTRY_LINKIFY(3) FreeBSD Library Functions Manual ARCHIVE_ENTRY_LINKIFY(3)

FreeBSD 14.0-RELEASE-p11 February 2, 2012 FreeBSD 14.0-RELEASE-p11

4. If *sparse is not NULL, archive it.

5. After all entries have been written to disk, call archive_entry_linkify() with *entry set to NULL and

archive the returned entry as long as it is not NULL.

RETURN VALUES
archive_entry_linkresolver_new() returns NULL on malloc(3) failures.

SEE ALSO
archive_entry(3)

ARCHIVE_ENTRY_LINKIFY(3) FreeBSD Library Functions Manual ARCHIVE_ENTRY_LINKIFY(3)

FreeBSD 14.0-RELEASE-p11 February 2, 2012 FreeBSD 14.0-RELEASE-p11

