
NAME
archive_read - functions for reading streaming archives

LIBRARY
Streaming Archive Library (libarchive, -larchive)

SYNOPSIS
#include <archive.h>

DESCRIPTION
These functions provide a complete API for reading streaming archives. The general process is to first

create the struct archive object, set options, initialize the reader, iterate over the archive headers and

associated data, then close the archive and release all resources.

Create archive object
See archive_read_new(3).

To read an archive, you must first obtain an initialized struct archive object from archive_read_new().

Enable filters and formats
See archive_read_filter(3) and archive_read_format(3).

You can then modify this object for the desired operations with the various archive_read_set_XXX()

and archive_read_support_XXX() functions. In particular, you will need to invoke appropriate

archive_read_support_XXX() functions to enable the corresponding compression and format support.

Note that these latter functions perform two distinct operations: they cause the corresponding support

code to be linked into your program, and they enable the corresponding auto-detect code. Unless you

have specific constraints, you will generally want to invoke archive_read_support_filter_all() and

archive_read_support_format_all() to enable auto-detect for all formats and compression types currently

supported by the library.

Set options
See archive_read_set_options(3).

Open archive
See archive_read_open(3).

Once you have prepared the struct archive object, you call archive_read_open() to actually open the

archive and prepare it for reading. There are several variants of this function; the most basic expects you

to provide pointers to several functions that can provide blocks of bytes from the archive. There are

ARCHIVE_READ(3) FreeBSD Library Functions Manual ARCHIVE_READ(3)

FreeBSD 14.0-RELEASE-p11 February 2, 2012 FreeBSD 14.0-RELEASE-p11

convenience forms that allow you to specify a filename, file descriptor, FILE * object, or a block of

memory from which to read the archive data. Note that the core library makes no assumptions about the

size of the blocks read; callback functions are free to read whatever block size is most appropriate for the

medium.

Consume archive
See archive_read_header(3), archive_read_data(3) and archive_read_extract(3).

Each archive entry consists of a header followed by a certain amount of data. You can obtain the next

header with archive_read_next_header(), which returns a pointer to an struct archive_entry structure

with information about the current archive element. If the entry is a regular file, then the header will be

followed by the file data. You can use archive_read_data() (which works much like the read(2) system

call) to read this data from the archive, or archive_read_data_block() which provides a slightly more

efficient interface. You may prefer to use the higher-level archive_read_data_skip(), which reads and

discards the data for this entry, archive_read_data_into_fd(), which copies the data to the provided file

descriptor, or archive_read_extract(), which recreates the specified entry on disk and copies data from

the archive. In particular, note that archive_read_extract() uses the struct archive_entry structure that

you provide it, which may differ from the entry just read from the archive. In particular, many

applications will want to override the pathname, file permissions, or ownership.

Release resources
See archive_read_free(3).

Once you have finished reading data from the archive, you should call archive_read_close() to close the

archive, then call archive_read_free() to release all resources, including all memory allocated by the

library.

EXAMPLES
The following illustrates basic usage of the library. In this example, the callback functions are simply

wrappers around the standard open(2), read(2), and close(2) system calls.

void

list_archive(const char *name)

{

struct mydata *mydata;

struct archive *a;

struct archive_entry *entry;

mydata = malloc(sizeof(struct mydata));

a = archive_read_new();

ARCHIVE_READ(3) FreeBSD Library Functions Manual ARCHIVE_READ(3)

FreeBSD 14.0-RELEASE-p11 February 2, 2012 FreeBSD 14.0-RELEASE-p11

mydata->name = name;

archive_read_support_filter_all(a);

archive_read_support_format_all(a);

archive_read_open(a, mydata, myopen, myread, myclose);

while (archive_read_next_header(a, &entry) == ARCHIVE_OK) {

printf("%s\n",archive_entry_pathname(entry));

archive_read_data_skip(a);

}

archive_read_free(a);

free(mydata);

}

la_ssize_t

myread(struct archive *a, void *client_data, const void **buff)

{

struct mydata *mydata = client_data;

*buff = mydata->buff;

return (read(mydata->fd, mydata->buff, 10240));

}

int

myopen(struct archive *a, void *client_data)

{

struct mydata *mydata = client_data;

mydata->fd = open(mydata->name, O_RDONLY);

return (mydata->fd >= 0 ? ARCHIVE_OK : ARCHIVE_FATAL);

}

int

myclose(struct archive *a, void *client_data)

{

struct mydata *mydata = client_data;

if (mydata->fd > 0)

close(mydata->fd);

return (ARCHIVE_OK);

}

ARCHIVE_READ(3) FreeBSD Library Functions Manual ARCHIVE_READ(3)

FreeBSD 14.0-RELEASE-p11 February 2, 2012 FreeBSD 14.0-RELEASE-p11

SEE ALSO
tar(1), archive_read_data(3), archive_read_extract(3), archive_read_filter(3), archive_read_format(3),

archive_read_header(3), archive_read_new(3), archive_read_open(3), archive_read_set_options(3),

archive_util(3), libarchive(3), tar(5)

HISTORY
The libarchive library first appeared in FreeBSD 5.3.

AUTHORS
The libarchive library was written by Tim Kientzle <kientzle@acm.org>.

BUGS
Many traditional archiver programs treat empty files as valid empty archives. For example, many

implementations of tar(1) allow you to append entries to an empty file. Of course, it is impossible to

determine the format of an empty file by inspecting the contents, so this library treats empty files as

having a special "empty" format.

ARCHIVE_READ(3) FreeBSD Library Functions Manual ARCHIVE_READ(3)

FreeBSD 14.0-RELEASE-p11 February 2, 2012 FreeBSD 14.0-RELEASE-p11

