
NAME
archive_write_disk_new, archive_write_disk_set_options, archive_write_disk_set_skip_file,

archive_write_disk_set_group_lookup, archive_write_disk_set_standard_lookup,

archive_write_disk_set_user_lookup - functions for creating objects on disk

LIBRARY
Streaming Archive Library (libarchive, -larchive)

SYNOPSIS
#include <archive.h>

struct archive *

archive_write_disk_new(void);

int

archive_write_disk_set_options(struct archive *, int flags);

int

archive_write_disk_set_skip_file(struct archive *, dev_t, ino_t);

int

archive_write_disk_set_group_lookup(struct archive *, void *,

gid_t (*)(void *, const char *gname, gid_t gid), void (*cleanup)(void *));

int

archive_write_disk_set_standard_lookup(struct archive *);

int

archive_write_disk_set_user_lookup(struct archive *, void *,

uid_t (*)(void *, const char *uname, uid_t uid), void (*cleanup)(void *));

DESCRIPTION
These functions provide a complete API for creating objects on disk from struct archive_entry

descriptions. They are most naturally used when extracting objects from an archive using the

archive_read() interface. The general process is to read struct archive_entry objects from an archive,

then write those objects to a struct archive object created using the archive_write_disk() family

functions. This interface is deliberately very similar to the archive_write() interface used to write

objects to a streaming archive.

archive_write_disk_new()

ARCHIVE_WRITE_DISK(3) FreeBSD Library Functions Manual ARCHIVE_WRITE_DISK(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2020 FreeBSD 14.0-RELEASE-p11



Allocates and initializes a struct archive object suitable for writing objects to disk.

archive_write_disk_set_skip_file()

Records the device and inode numbers of a file that should not be overwritten. This is typically

used to ensure that an extraction process does not overwrite the archive from which objects are

being read. This capability is technically unnecessary but can be a significant performance

optimization in practice.

archive_write_disk_set_options()

The options field consists of a bitwise OR of one or more of the following values:

ARCHIVE_EXTRACT_ACL
Attempt to restore Access Control Lists. By default, extended ACLs are ignored.

ARCHIVE_EXTRACT_CLEAR_NOCHANGE_FFLAGS
Before removing a file system object prior to replacing it, clear platform-specific file

flags which might prevent its removal.

ARCHIVE_EXTRACT_FFLAGS
Attempt to restore file attributes (file flags). By default, file attributes are ignored. See

chattr(1) (Linux) or chflags(1) (FreeBSD, Mac OS X) for more information on file

attributes.

ARCHIVE_EXTRACT_MAC_METADATA
Mac OS X specific. Restore metadata using copyfile(3). By default, copyfile(3)

metadata is ignored.

ARCHIVE_EXTRACT_NO_OVERWRITE
Existing files on disk will not be overwritten. By default, existing regular files are

truncated and overwritten; existing directories will have their permissions updated; other

pre-existing objects are unlinked and recreated from scratch.

ARCHIVE_EXTRACT_OWNER
The user and group IDs should be set on the restored file. By default, the user and group

IDs are not restored.

ARCHIVE_EXTRACT_PERM
Full permissions (including SGID, SUID, and sticky bits) should be restored exactly as

specified, without obeying the current umask. Note that SUID and SGID bits can only be

restored if the user and group ID of the object on disk are correct. If

ARCHIVE_EXTRACT_OWNER is not specified, then SUID and SGID bits will only be

restored if the default user and group IDs of newly-created objects on disk happen to

match those specified in the archive entry. By default, only basic permissions are

restored, and umask is obeyed.

ARCHIVE_EXTRACT_SAFE_WRITES
Extract files atomically, by first creating a unique temporary file and then renaming it to

its required destination name. This avoids a race where an application might see a partial

ARCHIVE_WRITE_DISK(3) FreeBSD Library Functions Manual ARCHIVE_WRITE_DISK(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2020 FreeBSD 14.0-RELEASE-p11



file (or no file) during extraction.

ARCHIVE_EXTRACT_SECURE_NOABSOLUTEPATHS
Refuse to extract an absolute path. The default is to not refuse such paths.

ARCHIVE_EXTRACT_SECURE_NODOTDOT
Refuse to extract a path that contains a .. element anywhere within it. The default is to

not refuse such paths. Note that paths ending in .. always cause an error, regardless of

this flag.

ARCHIVE_EXTRACT_SECURE_SYMLINKS
Refuse to extract any object whose final location would be altered by a symlink on disk.

This is intended to help guard against a variety of mischief caused by archives that

(deliberately or otherwise) extract files outside of the current directory. The default is not

to perform this check. If ARCHIVE_EXTRACT_UNLINK is specified together with

this option, the library will remove any intermediate symlinks it finds and return an error

only if such symlink could not be removed.

ARCHIVE_EXTRACT_SPARSE
Scan data for blocks of NUL bytes and try to recreate them with holes. This results in

sparse files, independent of whether the archive format supports or uses them.

ARCHIVE_EXTRACT_TIME
The timestamps (mtime, ctime, and atime) should be restored. By default, they are

ignored. Note that restoring of atime is not currently supported.

ARCHIVE_EXTRACT_UNLINK
Existing files on disk will be unlinked before any attempt to create them. In some cases,

this can prove to be a significant performance improvement. By default, existing files are

truncated and rewritten, but the file is not recreated. In particular, the default behavior

does not break existing hard links.

ARCHIVE_EXTRACT_XATTR
Attempt to restore extended file attributes. By default, they are ignored. See xattr(7)

(Linux), xattr(2) (Mac OS X), or getextattr(8) (FreeBSD) for more information on

extended file attributes.

archive_write_disk_set_group_lookup(), archive_write_disk_set_user_lookup()

The struct archive_entry objects contain both names and ids that can be used to identify users

and groups. These names and ids describe the ownership of the file itself and also appear in

ACL lists. By default, the library uses the ids and ignores the names, but this can be overridden

by registering user and group lookup functions. To register, you must provide a lookup function

which accepts both a name and id and returns a suitable id. You may also provide a void *

pointer to a private data structure and a cleanup function for that data. The cleanup function will

be invoked when the struct archive object is destroyed.

archive_write_disk_set_standard_lookup()

ARCHIVE_WRITE_DISK(3) FreeBSD Library Functions Manual ARCHIVE_WRITE_DISK(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2020 FreeBSD 14.0-RELEASE-p11



This convenience function installs a standard set of user and group lookup functions. These

functions use getpwnam(3) and getgrnam(3) to convert names to ids, defaulting to the ids if the

names cannot be looked up. These functions also implement a simple memory cache to reduce

the number of calls to getpwnam(3) and getgrnam(3).

More information about the struct archive object and the overall design of the library can be found in the

libarchive(3) overview. Many of these functions are also documented under archive_write(3).

RETURN VALUES
Most functions return ARCHIVE_OK (zero) on success, or one of several non-zero error codes for

errors. Specific error codes include: ARCHIVE_RETRY for operations that might succeed if retried,

ARCHIVE_WARN for unusual conditions that do not prevent further operations, and

ARCHIVE_FATAL for serious errors that make remaining operations impossible.

archive_write_disk_new() returns a pointer to a newly-allocated struct archive object.

archive_write_data() returns a count of the number of bytes actually written, or -1 on error.

ERRORS
Detailed error codes and textual descriptions are available from the archive_errno() and

archive_error_string() functions.

SEE ALSO
tar(1), archive_read(3), archive_write(3), libarchive(3)

HISTORY
The libarchive library first appeared in FreeBSD 5.3. The archive_write_disk interface was added to

libarchive 2.0 and first appeared in FreeBSD 6.3.

AUTHORS
The libarchive library was written by Tim Kientzle <kientzle@acm.org>.

BUGS
Directories are actually extracted in two distinct phases. Directories are created during

archive_write_header(), but final permissions are not set until archive_write_close(). This separation is

necessary to correctly handle borderline cases such as a non-writable directory containing files, but can

cause unexpected results. In particular, directory permissions are not fully restored until the archive is

closed. If you use chdir(2) to change the current directory between calls to archive_read_extract() or

before calling archive_read_close(), you may confuse the permission-setting logic with the result that

directory permissions are restored incorrectly.

ARCHIVE_WRITE_DISK(3) FreeBSD Library Functions Manual ARCHIVE_WRITE_DISK(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2020 FreeBSD 14.0-RELEASE-p11



The library attempts to create objects with filenames longer than PATH_MAX by creating prefixes of

the full path and changing the current directory. Currently, this logic is limited in scope; the fixup pass

does not work correctly for such objects and the symlink security check option disables the support for

very long pathnames.

Restoring the path aa/../bb does create each intermediate directory. In particular, the directory aa is

created as well as the final object bb. In theory, this can be exploited to create an entire directory

hierarchy with a single request. Of course, this does not work if the

ARCHIVE_EXTRACT_NODOTDOT option is specified.

Implicit directories are always created obeying the current umask. Explicit objects are created obeying

the current umask unless ARCHIVE_EXTRACT_PERM is specified, in which case they current umask

is ignored.

SGID and SUID bits are restored only if the correct user and group could be set. If

ARCHIVE_EXTRACT_OWNER is not specified, then no attempt is made to set the ownership. In this

case, SGID and SUID bits are restored only if the user and group of the final object happen to match

those specified in the entry.

The "standard" user-id and group-id lookup functions are not the defaults because getgrnam(3) and

getpwnam(3) are sometimes too large for particular applications. The current design allows the

application author to use a more compact implementation when appropriate.

There should be a corresponding archive_read_disk interface that walks a directory hierarchy and

returns archive entry objects.

ARCHIVE_WRITE_DISK(3) FreeBSD Library Functions Manual ARCHIVE_WRITE_DISK(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2020 FreeBSD 14.0-RELEASE-p11


