
NAME
assert, static_assert - expression verification macro

SYNOPSIS
#include <assert.h>

assert(expression);

static_assert(expression);

static_assert(expression, message);

DESCRIPTION
The assert() macro tests the given expression and if it is false, the calling process is terminated. A

diagnostic message is written to stderr and the function abort(3) is called, effectively terminating the

program.

If expression is true, the assert() macro does nothing.

The assert() macro may be removed at compile time by defining NDEBUG as a macro (e.g., by using

the cc(1) option -DNDEBUG). Unlike most other include files, <assert.h> may be included multiple

times. Each time whether or not NDEBUG is defined determines the behavior of assert from that point

forward until the end of the unit or another include of <assert.h>.

The assert() macro should only be used for ensuring the developer’s expectations hold true. It is not

appropriate for regular run-time error detection.

The static_assert() macro expands to _Static_assert(), and, contrarily to assert(), makes assertions at

compile-time. Once the constraint is violated, the compiler produces a diagnostic message including the

string literal message, if provided. The initial form of the _Static_assert() containing a string literal

message was introduced in C11 standard, and the other form with no string literal is to be implemented

by C2x and some compilers may lack its adoption at present.

EXAMPLES
The assertion:

assert(1 == 0);

generates a diagnostic message similar to the following:

Assertion failed: (1 == 0), function main, file main.c, line 100.

The following assert tries to assert there was no partial read:

ASSERT(3) FreeBSD Library Functions Manual ASSERT(3)

FreeBSD 14.0-RELEASE-p11 April 20, 2021 FreeBSD 14.0-RELEASE-p11



assert(read(fd, buf, nbytes) == nbytes);

However, there are two problems. First, it checks for normal conditions, rather than conditions that

indicate a bug. Second, the code will disappear if NDEBUG is defined, changing the semantics of the

program.

The following asserts that the size of the S structure is 16. Otherwise, it produces a diagnostic message

which points at the constraint and includes the provided string literal:

static_assert(sizeof(struct S) == 16, "size mismatch");

If none is provided, it only points at the constraint.

SEE ALSO
abort2(2), abort(3)

STANDARDS
The assert() macro conforms to ISO/IEC 9899:1999 ("ISO C99").

The static_assert() macro conforms to ISO/IEC 9899:2011 ("ISO C11").

HISTORY
An assert macro appeared in Version 7 AT&T UNIX.

ASSERT(3) FreeBSD Library Functions Manual ASSERT(3)

FreeBSD 14.0-RELEASE-p11 April 20, 2021 FreeBSD 14.0-RELEASE-p11


