
NAME
atf_add_test_case, atf_check, atf_check_equal, atf_check_not_equal, atf_config_get, atf_config_has,

atf_expect_death, atf_expect_exit, atf_expect_fail, atf_expect_pass, atf_expect_signal,
atf_expect_timeout, atf_fail, atf_get, atf_get_srcdir, atf_init_test_cases, atf_pass, atf_require_prog,

atf_set, atf_skip, atf_test_case - POSIX shell API to write ATF-based test programs

SYNOPSIS
atf_add_test_case "name"

atf_check "command"

atf_check_equal "expected_expression" "actual_expression"

atf_check_not_equal "expected_expression" "actual_expression"

atf_config_get "var_name"

atf_config_has "var_name"

atf_expect_death "reason" "..."

atf_expect_exit "exitcode" "reason" "..."

atf_expect_fail "reason" "..."

atf_expect_pass ""

atf_expect_signal "signo" "reason" "..."

atf_expect_timeout "reason" "..."

atf_fail "reason"

atf_get "var_name"

atf_get_srcdir
atf_init_test_cases "name"

atf_pass
atf_require_prog "prog_name"

atf_set "var_name" "value"

atf_skip "reason"

atf_test_case "name" "cleanup"

DESCRIPTION
ATF provides a simple but powerful interface to easily write test programs in the POSIX shell language.

These are extremely helpful given that they are trivial to write due to the language simplicity and the

great deal of available external tools, so they are often ideal to test other applications at the user level.

Test programs written using this library must be run using the atf-sh(1) interpreter by putting the

following on their very first line:

#! /usr/bin/env atf-sh

Shell-based test programs always follow this template:

ATF-SH(3) FreeBSD Library Functions Manual ATF-SH(3)

FreeBSD 14.0-RELEASE-p6 January 27, 2021 FreeBSD 14.0-RELEASE-p6

atf_test_case tc1

tc1_head() {

... first test case’s header ...

}

tc1_body() {

... first test case’s body ...

}

atf_test_case tc2 cleanup

tc2_head() {

... second test case’s header ...

}

tc2_body() {

... second test case’s body ...

}

tc2_cleanup() {

... second test case’s cleanup ...

}

... additional test cases ...

atf_init_test_cases() {

atf_add_test_case tc1

atf_add_test_case tc2

... add additional test cases ...

}

Definition of test cases
Test cases have an identifier and are composed of three different parts: the header, the body and an

optional cleanup routine, all of which are described in atf-test-case(4). To define test cases, one can use

the atf_test_case function, which takes a first parameter specifying the test case’s name and instructs the

library to set things up to accept it as a valid test case. The second parameter is optional and, if

provided, must be ‘cleanup’; providing this parameter allows defining a cleanup routine for the test case.

It is important to note that this function does not set the test case up for execution when the program is

run. In order to do so, a later registration is needed through the atf_add_test_case function detailed in

Program initialization.

Later on, one must define the three parts of the body by providing two or three functions (remember that

the cleanup routine is optional). These functions are named after the test case’s identifier, and are

<id>_head, <id>_body and <id>_cleanup. None of these take parameters when executed.

ATF-SH(3) FreeBSD Library Functions Manual ATF-SH(3)

FreeBSD 14.0-RELEASE-p6 January 27, 2021 FreeBSD 14.0-RELEASE-p6

Program initialization
The test program must define an atf_init_test_cases function, which is in charge of registering the test

cases that will be executed at run time by using the atf_add_test_case function, which takes the name of

a test case as its single parameter. This main function should not do anything else, except maybe

sourcing auxiliary source files that define extra variables and functions.

Configuration variables
The test case has read-only access to the current configuration variables through the atf_config_has and

atf_config_get methods. The former takes a single parameter specifying a variable name and returns a

boolean indicating whether the variable is defined or not. The latter can take one or two parameters. If

it takes only one, it specifies the variable from which to get the value, and this variable must be defined.

If it takes two, the second one specifies a default value to be returned if the variable is not available.

Access to the source directory
It is possible to get the path to the test case’s source directory from anywhere in the test program by

using the atf_get_srcdir function. It is interesting to note that this can be used inside atf_init_test_cases
to silently include additional helper files from the source directory.

Requiring programs
Aside from the require.progs meta-data variable available in the header only, one can also check for

additional programs in the test case’s body by using the atf_require_prog function, which takes the base

name or full path of a single binary. Relative paths are forbidden. If it is not found, the test case will be

automatically skipped.

Test case finalization
The test case finalizes either when the body reaches its end, at which point the test is assumed to have

passed, or at any explicit call to atf_pass, atf_fail or atf_skip. These three functions terminate the

execution of the test case immediately. The cleanup routine will be processed afterwards in a

completely automated way, regardless of the test case’s termination reason.

atf_pass does not take any parameters. atf_fail and atf_skip take a single string parameter that describes

why the test case failed or was skipped, respectively. It is very important to provide a clear error

message in both cases so that the user can quickly know why the test did not pass.

Expectations
Everything explained in the previous section changes when the test case expectations are redefined by

the programmer.

Each test case has an internal state called ‘expect’ that describes what the test case expectations are at

any point in time. The value of this property can change during execution by any of:

ATF-SH(3) FreeBSD Library Functions Manual ATF-SH(3)

FreeBSD 14.0-RELEASE-p6 January 27, 2021 FreeBSD 14.0-RELEASE-p6

atf_expect_death "reason" "..."

Expects the test case to exit prematurely regardless of the nature of the exit.

atf_expect_exit "exitcode" "reason" "..."

Expects the test case to exit cleanly. If exitcode is not ‘-1’, the runtime engine will validate that

the exit code of the test case matches the one provided in this call. Otherwise, the exact value

will be ignored.

atf_expect_fail "reason"

Any failure raised in this mode is recorded, but such failures do not report the test case as failed;

instead, the test case finalizes cleanly and is reported as ‘expected failure’; this report includes

the provided reason as part of it. If no error is raised while running in this mode, then the test

case is reported as ‘failed’.

This mode is useful to reproduce actual known bugs in tests. Whenever the developer fixes the

bug later on, the test case will start reporting a failure, signaling the developer that the test case

must be adjusted to the new conditions. In this situation, it is useful, for example, to set reason

as the bug number for tracking purposes.

atf_expect_pass
This is the normal mode of execution. In this mode, any failure is reported as such to the user

and the test case is marked as ‘failed’.

atf_expect_signal "signo" "reason" "..."

Expects the test case to terminate due to the reception of a signal. If signo is not ‘-1’, the runtime

engine will validate that the signal that terminated the test case matches the one provided in this

call. Otherwise, the exact value will be ignored.

atf_expect_timeout "reason" "..."

Expects the test case to execute for longer than its timeout.

Helper functions for common checks
atf_check "[options]" "command" "[args]"

Executes a command, performs checks on its exit code and its output, and fails the test case if

any of the checks is not successful. This function is particularly useful in integration tests that

verify the correct functioning of a binary.

Internally, this function is just a wrapper over the atf-check(1) tool (whose manual page provides

all details on the calling syntax). You should always use the atf_check function instead of the

atf-check(1) tool in your scripts; the latter is not even in the path.

ATF-SH(3) FreeBSD Library Functions Manual ATF-SH(3)

FreeBSD 14.0-RELEASE-p6 January 27, 2021 FreeBSD 14.0-RELEASE-p6

atf_check_equal "expected_expression" "actual_expression"

This function takes two expressions, evaluates them and, if their results differ, aborts the test

case with an appropriate failure message. The common style is to put the expected value in the

first parameter and the actual value in the second parameter.

atf_check_not_equal "expected_expression" "actual_expression"

This function takes two expressions, evaluates them and, if their results are equal, aborts the test

case with an appropriate failure message. The common style is to put the expected value in the

first parameter and the actual value in the second parameter.

EXAMPLES
The following shows a complete test program with a single test case that validates the addition operator:

atf_test_case addition

addition_head() {

atf_set "descr" "Sample tests for the addition operator"

}

addition_body() {

atf_check_equal 0 $((0 + 0))

atf_check_equal 1 $((0 + 1))

atf_check_equal 1 $((1 + 0))

atf_check_equal 2 $((1 + 1))

atf_check_equal 300 $((100 + 200))

}

atf_init_test_cases() {

atf_add_test_case addition

}

This other example shows how to include a file with extra helper functions in the test program:

... definition of test cases ...

atf_init_test_cases() {

. $(atf_get_srcdir)/helper_functions.sh

atf_add_test_case foo1

atf_add_test_case foo2

ATF-SH(3) FreeBSD Library Functions Manual ATF-SH(3)

FreeBSD 14.0-RELEASE-p6 January 27, 2021 FreeBSD 14.0-RELEASE-p6

}

This example demonstrates the use of the very useful atf_check function:

Check for silent output

atf_check -s exit:0 -o empty -e empty true

Check for silent output and failure

atf_check -s exit:1 -o empty -e empty false

Check for known stdout and silent stderr

echo foo >expout

atf_check -s exit:0 -o file:expout -e empty echo foo

Generate a file for later inspection

atf_check -s exit:0 -o save:stdout -e empty ls

grep foo ls || atf_fail "foo file not found in listing"

Or just do the match along the way

atf_check -s exit:0 -o match:"^foo$" -e empty ls

SEE ALSO
atf-check(1), atf-sh(1), atf-test-program(1), atf-test-case(4)

ATF-SH(3) FreeBSD Library Functions Manual ATF-SH(3)

FreeBSD 14.0-RELEASE-p6 January 27, 2021 FreeBSD 14.0-RELEASE-p6

