
NAME
atf-c, ATF_CHECK, ATF_CHECK_MSG, ATF_CHECK_EQ, ATF_CHECK_EQ_MSG,

ATF_CHECK_MATCH, ATF_CHECK_MATCH_MSG, ATF_CHECK_STREQ,

ATF_CHECK_STREQ_MSG, ATF_CHECK_INTEQ, ATF_CHECK_INTEQ_MSG,

ATF_CHECK_ERRNO, ATF_REQUIRE, ATF_REQUIRE_MSG, ATF_REQUIRE_EQ,

ATF_REQUIRE_EQ_MSG, ATF_REQUIRE_MATCH, ATF_REQUIRE_MATCH_MSG,

ATF_REQUIRE_STREQ, ATF_REQUIRE_STREQ_MSG, ATF_REQUIRE_INTEQ,

ATF_REQUIRE_INTEQ_MSG, ATF_REQUIRE_ERRNO, ATF_TC, ATF_TC_BODY,

ATF_TC_BODY_NAME, ATF_TC_CLEANUP, ATF_TC_CLEANUP_NAME, ATF_TC_HEAD,

ATF_TC_HEAD_NAME, ATF_TC_NAME, ATF_TC_WITH_CLEANUP,

ATF_TC_WITHOUT_HEAD, ATF_TP_ADD_TC, ATF_TP_ADD_TCS, atf_tc_get_config_var,

atf_tc_get_config_var_wd, atf_tc_get_config_var_as_bool, atf_tc_get_config_var_as_bool_wd,

atf_tc_get_config_var_as_long, atf_tc_get_config_var_as_long_wd, atf_no_error, atf_tc_expect_death,

atf_tc_expect_exit, atf_tc_expect_fail, atf_tc_expect_pass, atf_tc_expect_signal, atf_tc_expect_timeout,
atf_tc_fail, atf_tc_fail_nonfatal, atf_tc_pass, atf_tc_skip, atf_utils_cat_file, atf_utils_compare_file,

atf_utils_copy_file, atf_utils_create_file, atf_utils_file_exists, atf_utils_fork, atf_utils_free_charpp,

atf_utils_grep_file, atf_utils_grep_string, atf_utils_readline, atf_utils_redirect, atf_utils_wait - C API to

write ATF-based test programs

SYNOPSIS
#include <atf-c.h>

ATF_CHECK(expression);

ATF_CHECK_MSG(expression, fail_msg_fmt, ...);

ATF_CHECK_EQ(expected_expression, actual_expression);

ATF_CHECK_EQ_MSG(expected_expression, actual_expression, fail_msg_fmt, ...);

ATF_CHECK_MATCH(regexp, string);

ATF_CHECK_MATCH_MSG(regexp, string, fail_msg_fmt, ...);

ATF_CHECK_STREQ(expected_string, actual_string);

ATF_CHECK_STREQ_MSG(expected_string, actual_string, fail_msg_fmt, ...);

ATF_CHECK_INTEQ(expected_int, actual_int);

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

ATF_CHECK_INTEQ_MSG(expected_int, actual_int, fail_msg_fmt, ...);

ATF_CHECK_ERRNO(expected_errno, bool_expression);

ATF_REQUIRE(expression);

ATF_REQUIRE_MSG(expression, fail_msg_fmt, ...);

ATF_REQUIRE_EQ(expected_expression, actual_expression);

ATF_REQUIRE_EQ_MSG(expected_expression, actual_expression, fail_msg_fmt, ...);

ATF_REQUIRE_MATCH(regexp, string);

ATF_REQUIRE_MATCH_MSG(regexp, string, fail_msg_fmt, ...);

ATF_REQUIRE_STREQ(expected_string, actual_string);

ATF_REQUIRE_STREQ_MSG(expected_string, actual_string, fail_msg_fmt, ...);

ATF_REQUIRE_INTEQ(expected_int, actual_int);

ATF_REQUIRE_INTEQ_MSG(expected_int, actual_int, fail_msg_fmt, ...);

ATF_REQUIRE_ERRNO(expected_errno, bool_expression);

ATF_TC(name);

ATF_TC_BODY(name, tc);

ATF_TC_BODY_NAME(name);

ATF_TC_CLEANUP(name, tc);

ATF_TC_CLEANUP_NAME(name);

ATF_TC_HEAD(name, tc);

ATF_TC_HEAD_NAME(name);

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

ATF_TC_NAME(name);

ATF_TC_WITH_CLEANUP(name);

ATF_TC_WITHOUT_HEAD(name);

ATF_TP_ADD_TC(tp_name, tc_name);

ATF_TP_ADD_TCS(tp_name);

atf_tc_get_config_var(tc, varname);

atf_tc_get_config_var_wd(tc, variable_name, default_value);

atf_tc_get_config_var_as_bool(tc, variable_name);

atf_tc_get_config_var_as_bool_wd(tc, variable_name, default_value);

atf_tc_get_config_var_as_long(tc, variable_name);

atf_tc_get_config_var_as_long_wd(tc, variable_name, default_value);

atf_no_error();

atf_tc_expect_death(reason, ...);

atf_tc_expect_exit(exitcode, reason, ...);

atf_tc_expect_fail(reason, ...);

atf_tc_expect_pass();

atf_tc_expect_signal(signo, reason, ...);

atf_tc_expect_timeout(reason, ...);

atf_tc_fail(reason);

atf_tc_fail_nonfatal(reason);

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

atf_tc_pass();

atf_tc_skip(reason);

void

atf_utils_cat_file(const char *file, const char *prefix);

bool

atf_utils_compare_file(const char *file, const char *contents);

void

atf_utils_copy_file(const char *source, const char *destination);

void

atf_utils_create_file(const char *file, const char *contents, ...);

void

atf_utils_file_exists(const char *file);

pid_t

atf_utils_fork(void);

void

atf_utils_free_charpp(char **argv);

bool

atf_utils_grep_file(const char *regexp, const char *file, ...);

bool

atf_utils_grep_string(const char *regexp, const char *str, ...);

char *

atf_utils_readline(int fd);

void

atf_utils_redirect(const int fd, const char *file);

void

atf_utils_wait(const pid_t pid, const int expected_exit_status, const char *expected_stdout,

const char *expected_stderr);

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

DESCRIPTION
ATF provides a C programming interface to implement test programs. C-based test programs follow

this template:

... C-specific includes go here ...

#include <atf-c.h>

ATF_TC(tc1);

ATF_TC_HEAD(tc1, tc)

{

... first test case’s header ...

}

ATF_TC_BODY(tc1, tc)

{

... first test case’s body ...

}

ATF_TC_WITH_CLEANUP(tc2);

ATF_TC_HEAD(tc2, tc)

{

... second test case’s header ...

}

ATF_TC_BODY(tc2, tc)

{

... second test case’s body ...

}

ATF_TC_CLEANUP(tc2, tc)

{

... second test case’s cleanup ...

}

ATF_TC_WITHOUT_HEAD(tc3);

ATF_TC_BODY(tc3, tc)

{

... third test case’s body ...

}

... additional test cases ...

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

ATF_TP_ADD_TCS(tp)

{

ATF_TP_ADD_TC(tcs, tc1);

ATF_TP_ADD_TC(tcs, tc2);

ATF_TP_ADD_TC(tcs, tc3);

... add additional test cases ...

return atf_no_error();

}

Definition of test cases
Test cases have an identifier and are composed of three different parts: the header, the body and an

optional cleanup routine, all of which are described in atf-test-case(4). To define test cases, one can use

the ATF_TC(), ATF_TC_WITH_CLEANUP() or the ATF_TC_WITHOUT_HEAD() macros, which

take a single parameter specifying the test case’s name. ATF_TC(), requires to define a head and a body

for the test case, ATF_TC_WITH_CLEANUP() requires to define a head, a body and a cleanup for the

test case and ATF_TC_WITHOUT_HEAD() requires only a body for the test case. It is important to

note that these do not set the test case up for execution when the program is run. In order to do so, a

later registration is needed with the ATF_TP_ADD_TC() macro detailed in Program initialization.

Later on, one must define the three parts of the body by means of three functions. Their headers are

given by the ATF_TC_HEAD(), ATF_TC_BODY() and ATF_TC_CLEANUP() macros, all of which

take the test case name provided to the ATF_TC() ATF_TC_WITH_CLEANUP(), or

ATF_TC_WITHOUT_HEAD() macros and the name of the variable that will hold a pointer to the test

case data. Following each of these, a block of code is expected, surrounded by the opening and closing

brackets.

Program initialization
The library provides a way to easily define the test program’s main() function. You should never define

one on your own, but rely on the library to do it for you. This is done by using the

ATF_TP_ADD_TCS() macro, which is passed the name of the object that will hold the test cases, i.e.,

the test program instance. This name can be whatever you want as long as it is a valid variable

identifier.

After the macro, you are supposed to provide the body of a function, which should only use the

ATF_TP_ADD_TC() macro to register the test cases the test program will execute and return a success

error code. The first parameter of this macro matches the name you provided in the former call. The

success status can be returned using the atf_no_error() function.

Header definitions

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

The test case’s header can define the meta-data by using the atf_tc_set_md_var() method, which takes

three parameters: the first one points to the test case data, the second one specifies the meta-data variable

to be set and the third one specifies its value. Both of them are strings.

Configuration variables
The test case has read-only access to the current configuration variables by means of the bool

atf_tc_has_config_var(), const char * atf_tc_get_config_var(), const char * atf_tc_get_config_var_wd(),

bool atf_tc_get_config_var_as_bool(), bool atf_tc_get_config_var_as_bool_wd(), long

atf_tc_get_config_var_as_long(), and the long atf_tc_get_config_var_as_long_wd() functions, which

can be called in any of the three parts of a test case.

The ‘_wd’ variants take a default value for the variable which is returned if the variable is not defined.

The other functions without the ‘_wd’ suffix require the variable to be defined.

Access to the source directory
It is possible to get the path to the test case’s source directory from any of its three components by

querying the ‘srcdir’ configuration variable.

Requiring programs
Aside from the require.progs meta-data variable available in the header only, one can also check for

additional programs in the test case’s body by using the atf_tc_require_prog() function, which takes the

base name or full path of a single binary. Relative paths are forbidden. If it is not found, the test case

will be automatically skipped.

Test case finalization
The test case finalizes either when the body reaches its end, at which point the test is assumed to have

passed, unless any non-fatal errors were raised using atf_tc_fail_nonfatal(), or at any explicit call to

atf_tc_pass(), atf_tc_fail() or atf_tc_skip(). These three functions terminate the execution of the test

case immediately. The cleanup routine will be processed afterwards in a completely automated way,

regardless of the test case’s termination reason.

atf_tc_pass() does not take any parameters. atf_tc_fail(), atf_tc_fail_nonfatal() and atf_tc_skip() take a

format string and a variable list of parameters, which describe, in a user-friendly manner, why the test

case failed or was skipped, respectively. It is very important to provide a clear error message in both

cases so that the user can quickly know why the test did not pass.

Expectations
Everything explained in the previous section changes when the test case expectations are redefined by

the programmer.

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

Each test case has an internal state called ‘expect’ that describes what the test case expectations are at

any point in time. The value of this property can change during execution by any of:

atf_tc_expect_death(reason, ...)

Expects the test case to exit prematurely regardless of the nature of the exit.

atf_tc_expect_exit(exitcode, reason, ...)

Expects the test case to exit cleanly. If exitcode is not ‘-1’, the runtime engine will validate that

the exit code of the test case matches the one provided in this call. Otherwise, the exact value

will be ignored.

atf_tc_expect_fail(reason, ...)

Any failure (be it fatal or non-fatal) raised in this mode is recorded. However, such failures do

not report the test case as failed; instead, the test case finalizes cleanly and is reported as

‘expected failure’; this report includes the provided reason as part of it. If no error is raised

while running in this mode, then the test case is reported as ‘failed’.

This mode is useful to reproduce actual known bugs in tests. Whenever the developer fixes the

bug later on, the test case will start reporting a failure, signaling the developer that the test case

must be adjusted to the new conditions. In this situation, it is useful, for example, to set reason

as the bug number for tracking purposes.

atf_tc_expect_pass()

This is the normal mode of execution. In this mode, any failure is reported as such to the user

and the test case is marked as ‘failed’.

atf_tc_expect_signal(signo, reason, ...)

Expects the test case to terminate due to the reception of a signal. If signo is not ‘-1’, the runtime

engine will validate that the signal that terminated the test case matches the one provided in this

call. Otherwise, the exact value will be ignored.

atf_tc_expect_timeout(reason, ...)

Expects the test case to execute for longer than its timeout.

Helper macros for common checks
The library provides several macros that are very handy in multiple situations. These basically check

some condition after executing a given statement or processing a given expression and, if the condition

is not met, they report the test case as failed.

The ‘REQUIRE’ variant of the macros immediately abort the test case as soon as an error condition is

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

detected by calling the atf_tc_fail() function. Use this variant whenever it makes no sense to continue

the execution of a test case when the checked condition is not met. The ‘CHECK’ variant, on the other

hand, reports a failure as soon as it is encountered using the atf_tc_fail_nonfatal() function, but the

execution of the test case continues as if nothing had happened. Use this variant whenever the checked

condition is important as a result of the test case, but there are other conditions that can be subsequently

checked on the same run without aborting.

Additionally, the ‘MSG’ variants take an extra set of parameters to explicitly specify the failure

message. This failure message is formatted according to the printf(3) formatters.

ATF_CHECK(), ATF_CHECK_MSG(), ATF_REQUIRE() and ATF_REQUIRE_MSG() take an

expression and fail if the expression evaluates to false.

ATF_CHECK_EQ(), ATF_CHECK_EQ_MSG(), ATF_REQUIRE_EQ() and

ATF_REQUIRE_EQ_MSG() take two expressions and fail if the two evaluated values are not equal.

The common style is to put the expected value in the first parameter and the observed value in the

second parameter.

ATF_CHECK_MATCH(), ATF_CHECK_MATCH_MSG(), ATF_REQUIRE_MATCH() and

ATF_REQUIRE_MATCH_MSG() take a regular expression and a string and fail if the regular

expression does not match the given string. Note that the regular expression is not anchored, so it will

match anywhere in the string.

ATF_CHECK_STREQ(), ATF_CHECK_STREQ_MSG(), ATF_REQUIRE_STREQ() and

ATF_REQUIRE_STREQ_MSG() take two strings and fail if the two are not equal character by

character. The common style is to put the expected string in the first parameter and the observed string

in the second parameter.

ATF_CHECK_INTEQ(), ATF_CHECK_INTEQ_MSG(), ATF_REQUIRE_INTEQ() and

ATF_REQUIRE_INTQ_MSG() take two integers and fail if the two are not equal. The common style is

to put the expected integer in the first parameter and the observed integer in the second parameter.

ATF_CHECK_ERRNO() and ATF_REQUIRE_ERRNO() take, first, the error code that the check is

expecting to find in the errno variable and, second, a boolean expression that, if evaluates to true, means

that a call failed and errno has to be checked against the first value.

Utility functions
The following functions are provided as part of the atf-c API to simplify the creation of a variety of

tests. In particular, these are useful to write tests for command-line interfaces.

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

void atf_utils_cat_file(const char *file, const char *prefix)

Prints the contents of file to the standard output, prefixing every line with the string in prefix.

bool atf_utils_compare_file(const char *file, const char *contents)

Returns true if the given file matches exactly the expected inlined contents.

void atf_utils_copy_file(const char *source, const char *destination)

Copies the file source to destination. The permissions of the file are preserved during the code.

void atf_utils_create_file(const char *file, const char *contents, ...)

Creates file with the text given in contents, which is a formatting string that uses the rest of the

variable arguments.

void atf_utils_file_exists(const char *file)

Checks if file exists.

pid_t atf_utils_fork(void)

Forks a process and redirects the standard output and standard error of the child to files for later

validation with atf_utils_wait(). Fails the test case if the fork fails, so this does not return an error.

void atf_utils_free_charpp(char **argv)

Frees a dynamically-allocated array of dynamically-allocated strings.

bool atf_utils_grep_file(const char *regexp, const char *file, ...)

Searches for the regexp, which is a formatting string representing the regular expression, in the file.

The variable arguments are used to construct the regular expression.

bool atf_utils_grep_string(const char *regexp, const char *str, ...)

Searches for the regexp, which is a formatting string representing the regular expression, in the

literal string str. The variable arguments are used to construct the regular expression.

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

char * atf_utils_readline(int fd)

Reads a line from the file descriptor fd. The line, if any, is returned as a dynamically-allocated

buffer that must be released with free(3). If there was nothing to read, returns ‘NULL’.

void atf_utils_redirect(const int fd, const char *file)

Redirects the given file descriptor fd to file. This function exits the process in case of an error and

does not properly mark the test case as failed. As a result, it should only be used in subprocesses of

the test case; specially those spawned by atf_utils_fork().

void atf_utils_wait(const pid_t pid, const int expected_exit_status, const char *expected_stdout,

const char *expected_stderr)

Waits and validates the result of a subprocess spawned with atf_utils_fork(). The validation involves

checking that the subprocess exited cleanly and returned the code specified in expected_exit_status

and that its standard output and standard error match the strings given in expected_stdout and

expected_stderr.

If any of the expected_stdout or expected_stderr strings are prefixed with ‘save:’, then they specify

the name of the file into which to store the stdout or stderr of the subprocess, and no comparison is

performed.

ENVIRONMENT
The following variables are recognized by atf-c but should not be overridden other than for testing

purposes:

ATF_BUILD_CC Path to the C compiler.

ATF_BUILD_CFLAGS C compiler flags.

ATF_BUILD_CPP Path to the C/C++ preprocessor.

ATF_BUILD_CPPFLAGS C/C++ preprocessor flags.

ATF_BUILD_CXX Path to the C++ compiler.

ATF_BUILD_CXXFLAGS C++ compiler flags.

EXAMPLES
The following shows a complete test program with a single test case that validates the addition operator:

#include <atf-c.h>

ATF_TC(addition);

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

ATF_TC_HEAD(addition, tc)

{

atf_tc_set_md_var(tc, "descr",

"Sample tests for the addition operator");

}

ATF_TC_BODY(addition, tc)

{

ATF_CHECK_EQ(0, 0 + 0);

ATF_CHECK_EQ(1, 0 + 1);

ATF_CHECK_EQ(1, 1 + 0);

ATF_CHECK_EQ(2, 1 + 1);

ATF_CHECK_EQ(300, 100 + 200);

}

ATF_TC(string_formatting);

ATF_TC_HEAD(string_formatting, tc)

{

atf_tc_set_md_var(tc, "descr",

"Sample tests for the snprintf");

}

ATF_TC_BODY(string_formatting, tc)

{

char buf[1024];

snprintf(buf, sizeof(buf), "a %s", "string");

ATF_CHECK_STREQ_MSG("a string", buf, "%s is not working");

}

ATF_TC(open_failure);

ATF_TC_HEAD(open_failure, tc)

{

atf_tc_set_md_var(tc, "descr",

"Sample tests for the open function");

}

ATF_TC_BODY(open_failure, tc)

{

ATF_CHECK_ERRNO(ENOENT, open("non-existent", O_RDONLY) == -1);

}

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

ATF_TC(known_bug);

ATF_TC_HEAD(known_bug, tc)

{

atf_tc_set_md_var(tc, "descr",

"Reproduces a known bug");

}

ATF_TC_BODY(known_bug, tc)

{

atf_tc_expect_fail("See bug number foo/bar");

ATF_CHECK_EQ(3, 1 + 1);

atf_tc_expect_pass();

ATF_CHECK_EQ(3, 1 + 2);

}

ATF_TP_ADD_TCS(tp)

{

ATF_TP_ADD_TC(tp, addition);

ATF_TP_ADD_TC(tp, string_formatting);

ATF_TP_ADD_TC(tp, open_failure);

ATF_TP_ADD_TC(tp, known_bug);

return atf_no_error();

}

SEE ALSO
atf-test-program(1), atf-test-case(4)

ATF-C(3) FreeBSD Library Functions Manual ATF-C(3)

FreeBSD 14.0-RELEASE-p11 February 23, 2021 FreeBSD 14.0-RELEASE-p11

