
NAME
ATOMIC_VAR_INIT, atomic_init, atomic_load, atomic_store, atomic_exchange,

atomic_compare_exchange_strong, atomic_compare_exchange_weak, atomic_fetch_add,

atomic_fetch_and, atomic_fetch_or, atomic_fetch_sub, atomic_fetch_xor, atomic_is_lock_free - type-

generic atomic operations

SYNOPSIS
#include <stdatomic.h>

_Atomic(T) v = ATOMIC_VAR_INIT(c);

void

atomic_init(_Atomic(T) *object, T value);

T

atomic_load(_Atomic(T) *object);

T

atomic_load_explicit(_Atomic(T) *object, memory_order order);

void

atomic_store(_Atomic(T) *object, T desired);

void

atomic_store_explicit(_Atomic(T) *object, T desired, memory_order order);

T

atomic_exchange(_Atomic(T) *object, T desired);

T

atomic_exchange_explicit(_Atomic(T) *object, T desired, memory_order order);

_Bool

atomic_compare_exchange_strong(_Atomic(T) *object, T *expected, T desired);

_Bool

atomic_compare_exchange_strong_explicit(_Atomic(T) *object, T *expected, T desired,

memory_order success, memory_order failure);

_Bool

atomic_compare_exchange_weak(_Atomic(T) *object, T *expected, T desired);

ATOMIC_VAR_INIT(3) FreeBSD Library Functions Manual ATOMIC_VAR_INIT(3)

FreeBSD 14.0-RELEASE-p11 December 27, 2011 FreeBSD 14.0-RELEASE-p11



_Bool

atomic_compare_exchange_weak_explicit(_Atomic(T) *object, T *expected, T desired,

memory_order success, memory_order failure);

T

atomic_fetch_add(_Atomic(T) *object, T operand);

T

atomic_fetch_add_explicit(_Atomic(T) *object, T operand, memory_order order);

T

atomic_fetch_and(_Atomic(T) *object, T operand);

T

atomic_fetch_and_explicit(_Atomic(T) *object, T operand, memory_order order);

T

atomic_fetch_or(_Atomic(T) *object, T operand);

T

atomic_fetch_or_explicit(_Atomic(T) *object, T operand, memory_order order);

T

atomic_fetch_sub(_Atomic(T) *object, T operand);

T

atomic_fetch_sub_explicit(_Atomic(T) *object, T operand, memory_order order);

T

atomic_fetch_xor(_Atomic(T) *object, T operand);

T

atomic_fetch_xor_explicit(_Atomic(T) *object, T operand, memory_order order);

_Bool

atomic_is_lock_free(const _Atomic(T) *object);

DESCRIPTION
The header <stdatomic.h> provides type-generic macros for atomic operations. Atomic operations can

be used by multithreaded programs to provide shared variables between threads that in most cases may

ATOMIC_VAR_INIT(3) FreeBSD Library Functions Manual ATOMIC_VAR_INIT(3)

FreeBSD 14.0-RELEASE-p11 December 27, 2011 FreeBSD 14.0-RELEASE-p11



be modified without acquiring locks.

Atomic variables are declared using the _Atomic() type specifier. These variables are not type-

compatible with their non-atomic counterparts. Depending on the compiler used, atomic variables may

be opaque and can therefore only be influenced using the macros described.

The atomic_init() macro initializes the atomic variable object with a value. Atomic variables can be

initialized while being declared using ATOMIC_VAR_INIT().

The atomic_load() macro returns the value of atomic variable object. The atomic_store() macro sets the

atomic variable object to its desired value.

The atomic_exchange() macro combines the behaviour of atomic_load() and atomic_store(). It sets the

atomic variable object to its desired value and returns the original contents of the atomic variable.

The atomic_compare_exchange_strong() macro stores a desired value into atomic variable object, only

if the atomic variable is equal to its expected value. Upon success, the macro returns true. Upon failure,

the desired value is overwritten with the value of the atomic variable and false is returned. The

atomic_compare_exchange_weak() macro is identical to atomic_compare_exchange_strong(), but is

allowed to fail even if atomic variable object is equal to its expected value.

The atomic_fetch_add() macro adds the value operand to atomic variable object and returns the original

contents of the atomic variable.

The atomic_fetch_and() macro applies the and operator to atomic variable object and operand and stores

the value into object, while returning the original contents of the atomic variable.

The atomic_fetch_or() macro applies the or operator to atomic variable object and operand and stores

the value into object, while returning the original contents of the atomic variable.

The atomic_fetch_sub() macro subtracts the value operand from atomic variable object and returns the

original contents of the atomic variable.

The atomic_fetch_xor() macro applies the xor operator to atomic variable object and operand and stores

the value into object, while returning the original contents of the atomic variable.

The atomic_is_lock_free() macro returns whether atomic variable object uses locks when using atomic

operations.

BARRIERS

ATOMIC_VAR_INIT(3) FreeBSD Library Functions Manual ATOMIC_VAR_INIT(3)

FreeBSD 14.0-RELEASE-p11 December 27, 2011 FreeBSD 14.0-RELEASE-p11



The atomic operations described previously are implemented in such a way that they disallow both the

compiler and the executing processor to re-order any nearby memory operations across the atomic

operation. In certain cases this behaviour may cause suboptimal performance. To mitigate this, every

atomic operation has an _explicit() version that allows the re-ordering to be configured.

The order parameter of these _explicit() macros can have one of the following values.

memory_order_relaxed No operation orders memory.

memory_order_consume

Perform consume operation.

memory_order_acquire Acquire fence.

memory_order_release Release fence.

memory_order_acq_rel Acquire and release fence.

memory_order_seq_cst

Sequentially consistent acquire and release fence.

The previously described macros are identical to the _explicit() macros, when order is

memory_order_seq_cst.

COMPILER SUPPORT
These atomic operations are typically implemented by the compiler, as they must be implemented type-

generically and must often use special hardware instructions. As this interface has not been adopted by

most compilers yet, the <stdatomic.h> header implements these macros on top of existing compiler

intrinsics to provide forward compatibility.

This means that certain aspects of the interface, such as support for different barrier types may simply be

ignored. When using GCC, all atomic operations are executed as if they are using

memory_order_seq_cst.

Instead of using the atomic operations provided by this interface, ISO/IEC 9899:2011 ("ISO C11")

allows the atomic variables to be modified directly using built-in language operators. This behaviour

cannot be emulated for older compilers. To prevent unintended non-atomic access to these variables,

this header file places the atomic variable in a structure when using an older compiler.

When using GCC on architectures on which it lacks support for built-in atomic intrinsics, these macros

ATOMIC_VAR_INIT(3) FreeBSD Library Functions Manual ATOMIC_VAR_INIT(3)

FreeBSD 14.0-RELEASE-p11 December 27, 2011 FreeBSD 14.0-RELEASE-p11



may emit function calls to fallback routines. These fallback routines are only implemented for 32-bits

and 64-bits datatypes, if supported by the CPU.

SEE ALSO
pthread(3), atomic(9)

STANDARDS
These macros attempt to conform to ISO/IEC 9899:2011 ("ISO C11").

HISTORY
These macros appeared in FreeBSD 10.0.

AUTHORS
Ed Schouten <ed@FreeBSD.org>

David Chisnall <theraven@FreeBSD.org>

ATOMIC_VAR_INIT(3) FreeBSD Library Functions Manual ATOMIC_VAR_INIT(3)

FreeBSD 14.0-RELEASE-p11 December 27, 2011 FreeBSD 14.0-RELEASE-p11


