
NAME
awk - pattern-directed scanning and processing language

SYNOPSIS
awk [-safe] [-version] [-d[n]] [-F fs] [-v var=value] [prog | -f progfile] file ...

DESCRIPTION
awk scans each input file for lines that match any of a set of patterns specified literally in prog or in one

or more files specified as -f progfile. With each pattern there can be an associated action that will be

performed when a line of a file matches the pattern. Each line is matched against the pattern portion of

every pattern-action statement; the associated action is performed for each matched pattern. The file

name ‘-’ means the standard input. Any file of the form var=value is treated as an assignment, not a

filename, and is executed at the time it would have been opened if it were a filename.

The options are as follows:

-d[n] Debug mode. Set debug level to n, or 1 if n is not specified. A value greater than 1 causes awk to

dump core on fatal errors.

-F fs Define the input field separator to be the regular expression fs.

-f progfile

Read program code from the specified file progfile instead of from the command line.

-safe Disable file output (print >, print >>), process creation (cmd | getline, print |, system) and access

to the environment (ENVIRON; see the section on variables below). This is a first (and not very

reliable) approximation to a "safe" version of awk.

-version
Print the version number of awk to standard output and exit.

-v var=value

Assign value to variable var before prog is executed; any number of -v options may be present.

The input is normally made up of input lines (records) separated by newlines, or by the value of RS. If

RS is null, then any number of blank lines are used as the record separator, and newlines are used as

field separators (in addition to the value of FS). This is convenient when working with multi-line

records.

An input line is normally made up of fields separated by whitespace, or by the extended regular

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

expression FS as described below. The fields are denoted $1, $2, ..., while $0 refers to the entire line. If

FS is null, the input line is split into one field per character. While both gawk and mawk have the same

behavior, it is unspecified in the IEEE Std 1003.1-2008 ("POSIX.1") standard. If FS is a single space,

then leading and trailing blank and newline characters are skipped. Fields are delimited by one or more

blank or newline characters. A blank character is a space or a tab. If FS is a single character, other than

space, fields are delimited by each single occurrence of that character. The FS variable defaults to a

single space.

Normally, any number of blanks separate fields. In order to set the field separator to a single blank, use

the -F option with a value of ‘[]’. If a field separator of ‘t’ is specified, awk treats it as if ‘\t’ had been

specified and uses <TAB> as the field separator. In order to use a literal ‘t’ as the field separator, use

the -F option with a value of ‘[t]’.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-action statements

are separated by newlines or semicolons.

Newlines are permitted after a terminating statement or following a comma (‘,’), an open brace (‘{’), a

logical AND (‘&&’), a logical OR (‘||’), after the ‘do’ or ‘else’ keywords, or after the closing parenthesis

of an ‘if’, ‘for’, or ‘while’ statement. Additionally, a backslash (‘\’) can be used to escape a newline

between tokens.

An action is a sequence of statements. A statement can be one of the following:

if (expression) statement [else statement]

while (expression) statement

for (expression; expression; expression) statement

for (var in array) statement

do statement while (expression)

break
continue
{ [statement ...] }
expression # commonly var = expression

print [expression-list] [>expression]

printf format [..., expression-list] [>expression]

return [expression]

next # skip remaining patterns on this input line

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

nextfile # skip rest of this file, open next, start at top

delete array[expression] # delete an array element

delete array # delete all elements of array

exit [expression] # exit immediately; status is expression

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for

$0. String constants are quoted "", with the usual C escapes recognized within (see printf(1) for a

complete list of these). Expressions take on string or numeric values as appropriate, and are built using

the operators + - * / % ^ (exponentiation), and concatenation (indicated by whitespace). The operators !
++ -- += -= *= /= %= ^= > >= < <= == != ?: are also available in expressions. Variables may be scalars,

array elements (denoted x[i]) or fields. Variables are initialized to the null string. Array subscripts may

be any string, not necessarily numeric; this allows for a form of associative memory. Multiple

subscripts such as [i,j,k] are permitted; the constituents are concatenated, separated by the value of

SUBSEP (see the section on variables below).

The print statement prints its arguments on the standard output (or on a file if >file or >>file is present or

on a pipe if | cmd is present), separated by the current output field separator, and terminated by the

output record separator. file and cmd may be literal names or parenthesized expressions; identical string

values in different statements denote the same open file. The printf statement formats its expression list

according to the format (see printf(1)).

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expressions and relational

expressions. awk supports extended regular expressions (EREs). See re_format(7) for more information

on regular expressions. Isolated regular expressions in a pattern apply to the entire line. Regular

expressions may also occur in relational expressions, using the operators ~ and !~. /re/ is a constant

regular expression; any string (constant or variable) may be used as a regular expression, except in the

position of an isolated regular expression in a pattern.

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all

lines from an occurrence of the first pattern through an occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression

expression relop expression

expression in array-name

(expr, expr, ...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ~ (matches) or !~ (does

not match). A conditional is an arithmetic expression, a relational expression, or a Boolean combination

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read

and after the last. BEGIN and END do not combine with other patterns.

Variable names with special meanings:

ARGC Argument count, assignable.

ARGV Argument array, assignable; non-null members are taken as filenames.

CONVFMT Conversion format when converting numbers (default "%.6g").

ENVIRON Array of environment variables; subscripts are names.

FILENAME The name of the current input file.

FNR Ordinal number of the current record in the current file.

FS Regular expression used to separate fields; also settable by option -F fs.

NF Number of fields in the current record. $NF can be used to obtain the value of the last

field in the current record.

NR Ordinal number of the current record.

OFMT Output format for numbers (default "%.6g").

OFS Output field separator (default blank).

ORS Output record separator (default newline).

RLENGTH The length of the string matched by the match() function.

RS Input record separator (default newline).

RSTART The starting position of the string matched by the match() function.

SUBSEP Separates multiple subscripts (default 034).

FUNCTIONS
The awk language has a variety of built-in functions: arithmetic, string, input/output, general, and bit-

operation.

Functions may be defined (at the position of a pattern-action statement) thusly:

function foo(a, b, c) { ...; return x }

Parameters are passed by value if scalar, and by reference if array name; functions may be called

recursively. Parameters are local to the function; all other variables are global. Thus local variables

may be created by providing excess parameters in the function definition.

Arithmetic Functions
atan2(y, x) Return the arctangent of y/x in radians.

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

cos(x) Return the cosine of x, where x is in radians.

exp(x) Return the exponential of x.

int(x) Return x truncated to an integer value.

log(x) Return the natural logarithm of x.

rand() Return a random number, n, such that 0<=n<1.

sin(x) Return the sine of x, where x is in radians.

sqrt(x) Return the square root of x.

srand(expr)

Sets seed for rand() to expr and returns the previous seed. If expr is omitted, the time of day

is used instead.

String Functions
gsub(r, t, s) The same as sub() except that all occurrences of the regular expression are replaced.

gsub() returns the number of replacements.

index(s, t) The position in s where the string t occurs, or 0 if it does not.

length(s) The length of s taken as a string, or of $0 if no argument is given.

match(s, r) The position in s where the regular expression r occurs, or 0 if it does not. The variable

RSTART is set to the starting position of the matched string (which is the same as the

returned value) or zero if no match is found. The variable RLENGTH is set to the length

of the matched string, or -1 if no match is found.

split(s, a, fs) Splits the string s into array elements a[1], a[2], ..., a[n] and returns n. The separation is

done with the regular expression fs or with the field separator FS if fs is not given. An

empty string as field separator splits the string into one array element per character.

sprintf(fmt, expr, ...)

The string resulting from formatting expr, ... according to the printf(1) format fmt.

sub(r, t, s) Substitutes t for the first occurrence of the regular expression r in the string s. If s is not

given, $0 is used. An ampersand (‘&’) in t is replaced in string s with regular expression r.

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

A literal ampersand can be specified by preceding it with two backslashes (‘\\’). A literal

backslash can be specified by preceding it with another backslash (‘\\’). sub() returns the

number of replacements.

substr(s, m, n)

Return at most the n-character substring of s that begins at position m counted from 1. If n

is omitted, or if n specifies more characters than are left in the string, the length of the

substring is limited by the length of s.

tolower(str) Returns a copy of str with all upper-case characters translated to their corresponding lower-

case equivalents.

toupper(str) Returns a copy of str with all lower-case characters translated to their corresponding upper-

case equivalents.

Input/Output and General Functions
close(expr) Closes the file or pipe expr. expr should match the string that was used to open the

file or pipe.

cmd | getline [var]

Read a record of input from a stream piped from the output of cmd. If var is omitted,

the variables $0 and NF are set. Otherwise var is set. If the stream is not open, it is

opened. As long as the stream remains open, subsequent calls will read subsequent

records from the stream. The stream remains open until explicitly closed with a call

to close(). getline returns 1 for a successful input, 0 for end of file, and -1 for an

error.

fflush([expr]) Flushes any buffered output for the file or pipe expr, or all open files or pipes if expr

is omitted. expr should match the string that was used to open the file or pipe.

getline Sets $0 to the next input record from the current input file. This form of getline sets

the variables NF, NR, and FNR. getline returns 1 for a successful input, 0 for end of

file, and -1 for an error.

getline var Sets $0 to variable var. This form of getline sets the variables NR and FNR. getline
returns 1 for a successful input, 0 for end of file, and -1 for an error.

getline [var] <file Sets $0 to the next record from file. If var is omitted, the variables $0 and NF are

set. Otherwise var is set. If file is not open, it is opened. As long as the stream

remains open, subsequent calls will read subsequent records from file. file remains

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

open until explicitly closed with a call to close().

system(cmd) Executes cmd and returns its exit status.

Bit-Operation Functions
compl(x) Returns the bitwise complement of integer argument x.

and(v1, v2, ...)

Performs a bitwise AND on all arguments provided, as integers. There must be at least two

values.

or(v1, v2, ...)

Performs a bitwise OR on all arguments provided, as integers. There must be at least two

values.

xor(v1, v2, ...)

Performs a bitwise Exclusive-OR on all arguments provided, as integers. There must be at

least two values.

lshift(x, n)

Returns integer argument x shifted by n bits to the left.

rshift(x, n)

Returns integer argument x shifted by n bits to the right.

EXIT STATUS
The awk utility exits 0 on success, and >0 if an error occurs.

But note that the exit expression can modify the exit status.

EXAMPLES
Print lines longer than 72 characters:

length($0) > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

BEGIN { FS = ",[\t]*|[\t]+" }

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }

END { print "sum is", s, " average is", s/NR }

Print all lines between start/stop pairs:

/start/, /stop/

Simulate echo(1):

BEGIN { # Simulate echo(1)

for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]

printf "\n"

exit }

Print an error message to standard error:

{ print "error!" > "/dev/stderr" }

SEE ALSO
cut(1), lex(1), printf(1), sed(1), re_format(7)

A. V. Aho, B. W. Kernighan, and P. J. Weinberger, The AWK Programming Language,

Addison-Wesley, 1988, ISBN 0-201-07981-X.

STANDARDS
The awk utility is compliant with the IEEE Std 1003.1-2008 ("POSIX.1") specification, except awk does

not support {n,m} pattern matching.

The flags -d, -safe, and -version as well as the commands fflush, compl, and, or, xor, lshift, rshift, are

extensions to that specification.

HISTORY
An awk utility appeared in Version 7 AT&T UNIX.

BUGS

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

There are no explicit conversions between numbers and strings. To force an expression to be treated as

a number add 0 to it; to force it to be treated as a string concatenate "" to it.

The scope rules for variables in functions are a botch; the syntax is worse.

DEPRECATED BEHAVIOR
One True Awk has accpeted -F t to mean the same as -F <TAB> to make it easier to specify tabs as the

separator character. Upstream One True Awk has deprecated this wart in the name of better

compatibility with other awk implementations like gawk and mawk.

Historically, awk did not accept "0x" as a hex string. However, since One True Awk used strtod to

convert strings to floats, and since "0x12" is a valid hexadecimal representation of a floating point

number, On FreeBSD, awk has accepted this notation as an extension since One True Awk was

imported in FreeBSD 5.0. Upstream One True Awk has restored the historical behavior for better

compatibility between the different awk implementations. Both gawk and mawk already behave

similarly. Starting with FreeBSD 14.0 awk will no longer accept this extension.

The FreeBSD awk sets the locale for many years to match the environment it was running in. This lead

to pattern ranges, like "[A-Z]" sometimes matching lower case characters in some locales. This

misbehavior was never in upstream One True Awk and has been removed as a bug in FreeBSD 12.3,

FreeBSD 13.1, and FreeBSD 14.0.

AWK(1) FreeBSD General Commands Manual AWK(1)

FreeBSD 14.0-RELEASE-p11 July 30, 2021 FreeBSD 14.0-RELEASE-p11

