BASH(1)

NAME

FreeBSD General Commands Manual BASH(1)

bash - GNU Bourne-Again SHell

SYNOPSIS

bash [options] [command_string | file]

COPYRIGHT

Bash is Copyright (C) 1989-2022 by the Free Software Foundation, Inc.

DESCRIPTION
Bash is an sh-compatible command language interpreter that executes commands read from the
standard input or from afile. Bash also incorporates useful features from the Korn and C shells (ksh

and csh).

Bash isintended to be a conformant implementation of the Shell and Utilities portion of the IEEE
POSIX specification (IEEE Standard 1003.1). Bash can be configured to be POSIX-conformant by

default.

OPTIONS

All of the single-character shell options documented in the description of the set builtin command,
including -0, can be used as options when the shell isinvoked. In addition, bash interprets the
following options when it isinvoked:

-C

If the -c option is present, then commands are read from the first non-option argument
command_string. If there are arguments after the command_string, the first argument is
assigned to $0 and any remaining arguments are assigned to the positional parameters.
The assignment to $0 sets the name of the shell, which isused in warning and error
messages.

If the -i option is present, the shell isinteractive.

Make bash act asif it had been invoked asalogin shell (see INVOCATION below).

If the -r option is present, the shell becomesrestricted (see RESTRICTED SHELL below).
If the -soption is present, or if no arguments remain after option processing, then
commands are read from the standard input. This option allows the positional parameters
to be set when invoking an interactive shell or when reading input through a pipe.

A list of all double-quoted strings preceded by $ is printed on the standard output. These
are the strings that are subject to language translation when the current locale is not C or
POSI X. Thisimpliesthe -n option; no commands will be executed.

[-+]O [shopt_option]

GNU Bash 5.2

shopt_option is one of the shell options accepted by the shopt builtin (see SHEL L
BUILTIN COMMANDS below). If shopt_option is present, -O sets the value of that

2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

option; +O unsetsit. |f shopt_option isnot supplied, the names and values of the shell
options accepted by shopt are printed on the standard output. If the invocation optionis
+0, the output is displayed in aformat that may be reused as input.

- A -- signals the end of options and disables further option processing. Any arguments
after the -- are treated as filenames and arguments. An argument of - is equivalent to --.

Bash aso interprets a number of multi-character options. These options must appear on the command
line before the single-character options to be recognized.

--debugger
Arrange for the debugger profile to be executed before the shell starts. Turns on extended
debugging mode (see the description of the extdebug option to the shopt builtin below).
--dump-po-strings
Equivaent to -D, but the output isin the GNU gettext po (portable object) file format.
--dump-strings
Equivalent to -D.
--help
Display a usage message on standard output and exit successfully.
--init-filefile
--rcfilefile
Execute commands from file instead of the standard personal initialization file ~/.bashrc if the shell
isinteractive (see INVOCATION below).

--login
Equivalent to -I.

--noediting
Do not use the GNU readline library to read command lines when the shell isinteractive.

--noprofile
Do not read either the system-wide startup file /usr/local/etc/profile or any of the personal
initialization files ~/.bash_profile, ~/.bash_login, or ~/.profile. By default, bash reads these files
when it isinvoked as alogin shell (see INVOCATION below).

--norc
Do not read and execute the personal initiaization file ~/.bashrc if the shell isinteractive. This
option ison by default if the shell isinvoked as sh.

--posix
Change the behavior of bash where the default operation differs from the POSIX standard to match

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

the standard (posix mode). See SEE AL SO below for areference to a document that details how
posix mode affects bash’ s behavior.

--restricted
The shell becomes restricted (see RESTRICTED SHELL below).

--verbose
Equivaent to -v.

--version
Show version information for this instance of bash on the standard output and exit successfully.

ARGUMENTS
If arguments remain after option processing, and neither the -¢ nor the -s option has been supplied, the
first argument is assumed to be the name of afile containing shell commands. If bash isinvoked in this
fashion, $0 is set to the name of the file, and the positional parameters are set to the remaining
arguments. Bash reads and executes commands from thisfile, then exits. Bash's exit status is the exit
status of the last command executed in the script. 1f no commands are executed, the exit statusis 0.
An attempt is first made to open the file in the current directory, and, if no fileis found, then the shell
searches the directoriesin PATH for the script.

INVOCATION
A login shell is one whose first character of argument zero isa-, or one started with the --login option.

Aninteractive shell is one started without non-option arguments (unless -sis specified) and without the
-c option, whose standard input and error are both connected to terminals (as determined by isatty(3)),
or one started with the -i option. PS1isset and $- includesi if bash isinteractive, allowing a shell
script or astartup file to test this state.

The following paragraphs describe how bash executesiits startup files. If any of the files exist but
cannot be read, bash reports an error. Tildes are expanded in filenames as described below under Tilde
Expansion in the EXPANSION section.

When bash isinvoked as an interactive login shell, or as a non-interactive shell with the --login option,
it first reads and executes commands from the file /usr/local/etc/profile, if that file exists. After reading
that file, it looks for ~/.bash_profile, ~/.bash _login, and ~/.profile, in that order, and reads and executes
commands from the first one that exists and is readable. The --nopr ofile option may be used when the
shell is started to inhibit this behavior.

When an interactive login shell exits, or a non-interactive login shell executes the exit builtin

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

command, bash reads and executes commands from the file ~/.bash_logout, if it exists.

When an interactive shell that is not alogin shell is started, bash reads and executes commands from
~/.bashrc, if that file exists. Thismay be inhibited by using the --norc option. The --rcfilefile option
will force bash to read and execute commands from file instead of ~/.bashrc.

When bash is started non-interactively, to run a shell script, for example, it looks for the variable
BASH_ENV in the environment, expandsits value if it appears there, and uses the expanded value as
the name of afileto read and execute. Bash behaves asif the following command were executed:

if [-n"$BASH_ENV"]; then . "$BASH_ENV"; fi
but the value of the PATH variable is not used to search for the filename.

If bash isinvoked with the name sh, it tries to mimic the startup behavior of historical versions of sh as
closely as possible, while conforming to the POSIX standard as well. When invoked as an interactive
login shell, or a non-interactive shell with the --login option, it first attempts to read and execute
commands from /usr/local/etc/profile and ~/.profile, in that order. The --nopr ofile option may be used
to inhibit this behavior. When invoked as an interactive shell with the name sh, bash looks for the
variable ENV, expandsits value if it is defined, and uses the expanded value as the name of afileto
read and execute. Since a shell invoked as sh does not attempt to read and execute commands from
any other startup files, the --r cfile option has no effect. A non-interactive shell invoked with the name
sh does not attempt to read any other startup files. When invoked as sh, bash enters posix mode after
the startup files are read.

When bash is started in posix mode, as with the --posix command line option, it follows the POSIX
standard for startup files. In this mode, interactive shells expand the ENV variable and commands are
read and executed from the file whose name is the expanded value. No other startup files are read.

Bash attempts to determine when it is being run with its standard input connected to a network
connection, as when executed by the historical remote shell daemon, usually rshd, or the secure shell
daemon sshd. If bash determinesit is being run non-interactively in this fashion, it reads and executes
commands from ~/.bashrc, if that file exists and isreadable. It will not do thisif invoked assh. The
--nor ¢ option may be used to inhibit this behavior, and the --r cfile option may be used to force another
file to be read, but neither rshd nor sshd generally invoke the shell with those options or allow them to
be specified.

If the shell is started with the effective user (group) id not equal to the real user (group) id, and the -p
option is not supplied, no startup files are read, shell functions are not inherited from the environment,
the SHELLOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if they appear in the
environment, are ignored, and the effective user id is set to the real user id. If the -p option is supplied
at invocation, the startup behavior is the same, but the effective user id is not reset.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank
A space or tab.
word
A sequence of characters considered as a single unit by the shell. Also known as atoken.
name
A word consisting only of alphanumeric characters and underscores, and beginning with an
alphabetic character or an underscore. Also referred to as an identifier.
metachar acter
A character that, when unquoted, separates words. One of the following:
| & ; () <> spacetab newline
control operator
A token that performs a control function. It isone of the following symbols:
|& && ;;;:& & ()]|& <newline>

RESERVED WORDS
Reserved words are words that have a special meaning to the shell. The following words are
recognized as reserved when unquoted and either the first word of acommand (see SHEL L
GRAMMAR below), the third word of a case or select command (only in isvalid), or the third word of
afor command (only in and do are valid):

I case coproc do doneédlif else esac fi for function if in select then until while{ } time[[]]

SHELL GRAMMAR
This section describes the syntax of the various forms of shell commands.

Simple Commands
A simple command is a sequence of optional variable assignments followed by blank-separated words
and redirections, and terminated by a control operator. The first word specifies the command to be
executed, and is passed as argument zero. The remaining words are passed as arguments to the
invoked command.

The return value of asimple command isits exit status, or 128+n if the command is terminated by
signal n.

Pipelines

A pipelineis a sequence of one or more commands separated by one of the control operators | or |& .
The format for apipelineis:

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

[time[-p]] ['] commandl [[|||&] command?2 ...]

The standard output of command1 is connected via a pipe to the standard input of command2. This
connection is performed before any redirections specified by the commandl(see REDIRECTION

below). If |& isused, commandl’'s standard error, in addition to its standard output, is connected to
command?2’ s standard input through the pipe; it is shorthand for 2>& 1 |. Thisimplicit redirection of
the standard error to the standard output is performed after any redirections specified by commandl.

The return status of a pipeline isthe exit status of the last command, unless the pipefail option is
enabled. If pipefail isenabled, the pipeline sreturn statusis the value of the last (rightmost) command
to exit with anon-zero status, or zero if all commands exit successfully. If the reserved word !
precedes a pipeline, the exit status of that pipeline isthe logical negation of the exit status as described
above. The shell waitsfor all commands in the pipeline to terminate before returning a value.

If the time reserved word precedes a pipeline, the elapsed as well as user and system time consumed by
its execution are reported when the pipeline terminates. The -p option changes the output format to
that specified by POSIX. When the shell isin posix mode, it does not recognize time as a reserved
word if the next token beginswitha‘-'. The TIMEFORMAT variable may be set to aformat string
that specifies how the timing information should be displayed; see the description of TIMEFORMAT
under Shell Variables below.

When the shell isin posix mode, time may be followed by anewline. In this case, the shell displays
the total user and system time consumed by the shell and its children. The TIMEFORMAT variable
may be used to specify the format of the time information.

Each command in a multi-command pipeline, where pipes are created, is executed in a subshell, which
isaseparate process. See COMMAND EXECUTION ENVIRONMENT for a description of subshells
and a subshell environment. If the lastpipe option is enabled using the shopt builtin (see the description
of shopt below), the last element of a pipeline may be run by the shell process when job control is not
active.

Lists
A list is a sequence of one or more pipelines separated by one of the operators;, &, & &, or ||, and

optionally terminated by one of ;, &, or <newline>.

Of theselist operators, & & and || have equal precedence, followed by ; and & , which have equal
precedence.

A sequence of one or more hewlines may appear in alist instead of a semicolon to delimit commands.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

If acommand is terminated by the control operator & , the shell executes the command in the
background in a subshell. The shell does not wait for the command to finish, and the return statusis 0.
These are referred to as asynchronous commands. Commands separated by a ; are executed
sequentially; the shell waits for each command to terminate in turn. The return status is the exit status
of the last command executed.

AND and OR lists are sequences of one or more pipelines separated by the & & and || control operators,
respectively. AND and OR lists are executed with left associativity. An AND list hasthe form

commandl & & command2
command2 is executed if, and only if, commandl returns an exit status of zero (success).
An OR list has the form

commandl || command2

command2 is executed if, and only if, commandl returns a non-zero exit status. The return status of
AND and OR listsis the exit status of the last command executed in the list.

Compound Commands
A compound command is one of the following. In most cases alist in acommand’ s description may be
separated from the rest of the command by one or more newlines, and may be followed by anewlinein
place of a semicolon.

(list)
list is executed in asubshell (see COMMAND EXECUTION ENVIRONMENT below for a
description of a subshell environment). Variable assignments and builtin commands that affect the
shell’ s environment do not remain in effect after the command completes. The return statusisthe

exit status of list.

{ list; }
list issimply executed in the current shell environment. list must be terminated with a newline or
semicolon. Thisisknown asagroup command. The return statusis the exit status of list. Note
that unlike the metacharacters (and), { and } are reserved words and must occur where areserved
word is permitted to be recognized. Since they do not cause aword break, they must be separated
from list by whitespace or another shell metacharacter.

((expression))
The expression is evaluated according to the rules described below under ARITHMETIC

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

EVALUATION. If thevalue of the expression is non-zero, the return status is 0; otherwise the
return statusis 1. The expression undergoes the same expansions as if it were within double
guotes, but double quote characters in expression are not treated specially and are removed.

[expression]]
Return a status of O or 1 depending on the evaluation of the conditional expression expression.
Expressions are composed of the primaries described below under CONDITIONAL
EXPRESSIONS. The words between the [[and]] do not undergo word splitting and pathname
expansion. The shell performs tilde expansion, parameter and variable expansion, arithmetic
expansion, command substitution, process substitution, and quote removal on those words (the
expansions that would occur if the words were enclosed in double quotes). Conditional operators
such as -f must be unquoted to be recognized as primaries.

When used with [[, the < and > operators sort lexicographically using the current locale.

When the == and != operators are used, the string to the right of the operator is considered a
pattern and matched according to the rules described below under Pattern Matching, asif the
extglob shell option were enabled. The = operator is equivalent to ==. If the nocasematch shell
option is enabled, the match is performed without regard to the case of alphabetic characters. The
return valueis 0 if the string matches (==) or does not match (!=) the pattern, and 1 otherwise.
Any part of the pattern may be quoted to force the quoted portion to be matched as a string.

An additional binary operator, =~, is available, with the same precedenceas==and !=. Whenitis
used, the string to the right of the operator is considered a POSIX extended regular expression and
matched accordingly (using the POSIX regcomp and regexec interfaces usually described in
regex(3)). Thereturn valueis 0 if the string matches the pattern, and 1 otherwise. If the regular
expression is syntactically incorrect, the conditional expression’sreturn valueis 2. If the
nocasematch shell option is enabled, the match is performed without regard to the case of
alphabetic characters. If any part of the pattern is quoted, the quoted portion is matched literally.
This means every character in the quoted portion matches itself, instead of having any special
pattern matching meaning. If the pattern is stored in a shell variable, quoting the variable
expansion forces the entire pattern to be matched literally. Treat bracket expressionsin regular
expressions carefully, since normal quoting and pattern characters lose their meanings between
brackets.

The pattern will match if it matches any part of the string. Anchor the pattern using the and $
regular expression operators to force it to match the entire string. The array variable
BASH_REMATCH records which parts of the string matched the pattern. The element of
BASH_REMATCH with index 0 contains the portion of the string matching the entire regular
expression. Substrings matched by parenthesized subexpressions within the regular expression are

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

saved in the remaining BASH_REMATCH indices. The element of BASH _REMATCH with
index nisthe portion of the string matching the nth parenthesized subexpression. Bash sets
BASH REMATCH inthe global scope; declaring it as alocal variable will lead to unexpected
results.

Expressions may be combined using the following operators, listed in decreasing order of
precedence;

(expression)
Returns the value of expression. This may be used to override the normal precedence of
operators.
| expression
Trueif expression isfalse.
expressionl & & expression2
Trueif both expressionl and expression2 are true.
expressionl || expression2
Trueif either expressionl or expression2 istrue.

The & & and || operators do not evaluate expression?2 if the value of expressionl is sufficient to
determine the return value of the entire conditional expression.

for name[[in[word...]];] dolist; done
Thelist of words following in is expanded, generating alist of items. The variable nameis set to
each element of thislist in turn, and list is executed each time. If thein word is omitted, the for
command executes list once for each positional parameter that is set (see PARAMETERS below).
Thereturn status is the exit status of the last command that executes. If the expansion of the items
following in resultsin an empty list, no commands are executed, and the return status is 0.

for ((exprl; expr2; expr3)); dolist; done
First, the arithmetic expression exprl is evaluated according to the rules described below under
ARITHMETIC EVALUATION. The arithmetic expression expr2 is then evaluated repeatedly
until it evaluatesto zero. Each time expr2 evaluates to a non-zero value, list is executed and the
arithmetic expression expr3 isevauated. If any expression is omitted, it behaves asif it evaluates
to 1. Thereturn valueisthe exit status of the last command in list that is executed, or false if any
of the expressionsisinvalid.

select name[inword] ; dolist ; done
Thelist of words following in is expanded, generating alist of items, and the set of expanded
wordsis printed on the standard error, each preceded by a number. If thein word is omitted, the
positional parameters are printed (see PARAMETERS below). select then displays the PS3

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

prompt and reads aline from the standard input. If the line consists of a number corresponding to
one of the displayed words, then the value of nhameis set to that word. If the lineis empty, the
words and prompt are displayed again. If EOF is read, the select command completes and returns
1. Any other value read causes nameto be set to null. Thelineread is saved in the variable
REPLY. Thelist is executed after each selection until abreak command is executed. The exit
status of select isthe exit status of the last command executed in list, or zero if no commands were
executed.

casewordin [[(] pattern [| pattern] ...) list ;;] ... esac
A case command first expands word, and tries to match it against each pattern in turn, using the
matching rules described under Pattern Matching below. The word is expanded using tilde
expansion, parameter and variable expansion, arithmetic expansion, command substitution, process
substitution and quote removal. Each pattern examined is expanded using tilde expansion,
parameter and variable expansion, arithmetic expansion, command substitution, process
substitution, and quote removal. If the nocasematch shell option is enabled, the matchis
performed without regard to the case of aphabetic characters. When amatch isfound, the
corresponding list is executed. If the ;; operator is used, no subsequent matches are attempted after
the first pattern match. Using ;& in place of ;; causes execution to continue with the list associated
with the next set of patterns. Using ;;& in place of ;; causesthe shell to test the next pattern list in
the statement, if any, and execute any associated list on a successful match, continuing the case
statement execution asif the pattern list had not matched. The exit status is zero if no pattern
matches. Otherwise, it isthe exit status of the last command executed in list.

if list; then list; [eif list; then list;] ... [elselist;] fi
Theif list isexecuted. If itsexit statusis zero, thethen list is executed. Otherwise, each dlif list is
executed in turn, and if its exit statusis zero, the corresponding then list is executed and the
command completes. Otherwise, the else list is executed, if present. The exit statusis the exit
status of the last command executed, or zero if no condition tested true.

whilelist-1; do list-2; done

until list-1; do list-2; done
The while command continuously executesthe list list-2 aslong as the last command in the list
list-1 returns an exit status of zero. The until command isidentical to the while command, except
that the test is negated: list-2 is executed as long as the last command in list-1 returns a non-zero
exit status. The exit status of the while and until commands is the exit status of the last command
executed in list-2, or zero if none was executed.

Coprocesses

A coprocessisashell command preceded by the coproc reserved word. A coprocessis executed
asynchronously in asubshell, asif the command had been terminated with the & control operator, with

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

atwo-way pipe established between the executing shell and the coprocess.
The syntax for a coprocessis:
coproc [NAME] command [redirections]

This creates a coprocess named NAME. command may be either a simple command or a compound
command (see above). NAME isashell variable name. If NAME is not supplied, the default nameis
COPROC.

The recommended form to use for a coprocessis
coproc NAME { command [redirectiong]; }

Thisform is recommended because simple commands result in the coprocess always being named
COPROC, and it is simpler to use and more compl ete than the other compound commands.

If command is a compound command, NAME is optional. The word following copr oc determines
whether that word isinterpreted as a variable name: it isinterpreted as NAME if it is not areserved
word that introduces a compound command. If command is a simple command, NAME is not allowed,
thisisto avoid confusion between NAME and the first word of the simple command.

When the coprocess is executed, the shell creates an array variable (see Arrays below) named NAME
in the context of the executing shell. The standard output of command is connected viaa pipeto afile
descriptor in the executing shell, and that file descriptor is assigned to NAME[0]. The standard input
of command is connected via a pipe to afile descriptor in the executing shell, and that file descriptor is
assigned to NAME[1]. This pipeis established before any redirections specified by the command (see
REDIRECTION below). The file descriptors can be utilized as arguments to shell commands and
redirections using standard word expansions. Other than those created to execute command and
process substitutions, the file descriptors are not available in subshells.

The process ID of the shell spawned to execute the coprocess is available as the value of the variable
NAME_PID. Thewait builtin command may be used to wait for the coprocess to terminate.

Since the coprocess is created as an asynchronous command, the coproc command always returns
success. The return status of a coprocessis the exit status of command.

Shell Function Definitions

A shell function is an object that is called like a simple command and executes a compound command
with anew set of positional parameters. Shell functions are declared as follows:

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

fname () compound-command [redirection]

function fname [()] compound-command [redirection]
This defines a function named fname. The reserved word function is optional. If the function
reserved word is supplied, the parentheses are optional. The body of the function is the compound
command compound-command (see Compound Commands above). That command is usually a
list of commands between { and }, but may be any command listed under Compound Commands
above. If the function reserved word is used, but the parentheses are not supplied, the braces are
recommended. compound-command is executed whenever fname is specified as the name of a
simple command. When in posix mode, fname must be avalid shell name and may not be the
name of one of the POSIX special builtins. In default mode, a function hame can be any ungquoted
shell word that does not contain $. Any redirections (see REDIRECTION below) specified when a
function is defined are performed when the function is executed. The exit status of afunction
definition is zero unless a syntax error occurs or areadonly function with the same name already
exists. When executed, the exit status of a function is the exit status of the last command executed
inthe body. (See FUNCTIONS below.)

COMMENTS
In anon-interactive shell, or an interactive shell in which the interactive_comments option to the shopt
builtinis enabled (see SHELL BUILTIN COMMANDS below), aword beginning with # causes that
word and al remaining characters on that line to beignored. An interactive shell without the
interactive_comments option enabled does not allow comments. Theinteractive_commentsoptionis
on by default in interactive shells.

QUOTING
Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can
be used to disable special treatment for special characters, to prevent reserved words from being
recognized as such, and to prevent parameter expansion.

Each of the metacharacters listed above under DEFINITIONS has special meaning to the shell and
must be quoted if it is to represent itself.

When the command history expansion facilities are being used (see HISTORY EXPANSION below),
the history expansion character, usualy !, must be quoted to prevent history expansion.

There are three quoting mechanisms: the escape character, single quotes, and double quotes.
A non-quoted backslash (\) is the escape character. It preservesthe literal value of the next character
that follows, with the exception of <newline>. If a\<newline> pair appears, and the backslash is not

itself quoted, the \<newline> is treated as aline continuation (that is, it is removed from the input
stream and effectively ignored).

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A
single quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of al characters within the quotes,
with the exception of $, *, \, and, when history expansion isenabled, !. When the shell isin posix
mode, the ! has no special meaning within double quotes, even when history expansion is enabled. The
characters $ and * retain their special meaning within double quotes. The backslash retains its special
meaning only when followed by one of the following characters: $, “, ", \, or <newline>. A double
guote may be quoted within double quotes by preceding it with abackslash. If enabled, history
expansion will be performed unlessan! appearing in double quotes is escaped using a backdash. The
backslash preceding the! is not removed.

The special parameters* and @ have specia meaning when in double quotes (see PARAMETERS
below).

Character sequences of the form $'string’ are treated as a special variant of single quotes. The
sequence expands to string, with backslash-escaped charactersin string replaced as specified by the
ANSI C standard. Backslash escape sequences, if present, are decoded as follows:
\a adert (bell)
\b backspace
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backdlash
\" single quote
\" double quote
\? question mark
\nnn
the eight-bit character whose value is the octal value nnn (one to three octa digits)
\xHH
the eight-bit character whose value is the hexadecimal value HH (one or two hex digits)
\uHHHH
the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value HHHH (oneto
four hex digits)
\UHHHHHHHH
the Unicode (1SO/IEC 10646) character whose value is the hexadecimal value HHHHHHHH

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

(oneto eight hex digits)
\cx acontrol-x character

The expanded result is single-quoted, asif the dollar sign had not been present.

A double-quoted string preceded by a dollar sign ($"string") will cause the string to be translated
according to the current locale. The gettext infrastructure performs the lookup and translation, using

the LC_MESSAGES, TEXTDOMAINDIR, and TEXTDOMAIN shell variables. If the current locale
isC or POSI X, if there are no trandations available, or if the string is not tranglated, the dollar signis
ignored. Thisisaform of double quoting, so the string remains double-quoted by default, whether or
not it istranslated and replaced. If the noexpand_translation option is enabled using the shopt builtin,
trandated strings are single-quoted instead of double-quoted. See the description of shopt below under
SHELLBUILTINCOMMANDS.

PARAMETERS
A parameter is an entity that stores values. It can be a name, a number, or one of the specia characters
listed below under Special Parameters. A variable is a parameter denoted by aname. A variable hasa
value and zero or more attributes. Attributes are assigned using the declar e builtin command (see
declarebelow in SHELL BUILTIN COMMANDS).

A parameter is set if it has been assigned avalue. The null stringisavalid value. Once avariableis
set, it may be unset only by using the unset builtin command (see SHELL BUILTIN COMMANDS
below).

A variable may be assigned to by a statement of the form
name=[value]

If valueis not given, the variable is assigned the null string. All values undergo tilde expansion,
parameter and variable expansion, command substitution, arithmetic expansion, and quote removal (see
EXPANSION below). If the variable hasitsinteger attribute set, then value is evaluated as an
arithmetic expression even if the $((...)) expansion is not used (see Arithmetic Expansion below).
Word splitting and pathname expansion are not performed. Assignment statements may also appear as
argumentsto the alias, declar e, typeset, export, readonly, and local builtin commands (declaration
commands). When in posix mode, these builtins may appear in acommand after one or more instances
of the command builtin and retain these assignment statement properties.

In the context where an assignment statement is assigning a value to a shell variable or array index, the

+= operator can be used to append to or add to the variable' s previous value. Thisincludes arguments
to builtin commands such as declar e that accept assignment statements (declaration commands). When

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

+=isapplied to avariable for which the integer attribute has been set, valueis evaluated as an
arithmetic expression and added to the variable’s current value, which is also evaluated. When +=is
applied to an array variable using compound assignment (see Arrays below), the variable' s value is not
unset (asit iswhen using =), and new values are appended to the array beginning at one greater than
the array’ s maximum index (for indexed arrays) or added as additional key-value pairsin an associative
array. When applied to a string-valued variable, value is expanded and appended to the variable's
value.

A variable can be assigned the nameref attribute using the -n option to the declar e or local builtin
commands (see the descriptions of declar e and local below) to create a nameref, or areferenceto
another variable. Thisallows variablesto be manipulated indirectly. Whenever the nameref variableis
referenced, assigned to, unset, or has its attributes modified (other than using or changing the namer ef
attribute itself), the operation is actually performed on the variable specified by the nameref variable's
value. A nameref is commonly used within shell functionsto refer to a variable whose name is passed
as an argument to the function. For instance, if avariable name is passed to a shell function asitsfirst
argument, running

declare -n ref=$1
inside the function creates a nameref variable ref whose value is the variable name passed as the first
argument. References and assignmentsto ref, and changes to its attributes, are treated as references,
assignments, and attribute modifications to the variable whose name was passed as $1. |f the control
variablein afor loop has the nameref attribute, the list of words can be alist of shell variables, and a
name reference will be established for each word in the list, in turn, when the loop is executed. Array
variables cannot be given the namer ef attribute. However, nameref variables can reference array
variables and subscripted array variables. Namerefs can be unset using the -n option to the unset
builtin. Otherwise, if unset is executed with the name of a nameref variable as an argument, the
variable referenced by the nameref variable will be unset.

Positional Parameters
A positional parameter is a parameter denoted by one or more digits, other than the single digit O.
Positional parameters are assigned from the shell’ s arguments when it is invoked, and may be
reassigned using the set builtin command. Positional parameters may not be assigned to with
assignment statements. The positional parameters are temporarily replaced when a shell functionis
executed (see FUNCTIONS below).

When a positional parameter consisting of more than asingle digit is expanded, it must be enclosed in
braces (see EXPANSI ON below).

Special Parameters

The shell treats several parameters specialy. These parameters may only be referenced; assignment to
them is not allowed.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

* Expandsto the positional parameters, starting from one. When the expansion is not within double
guotes, each positional parameter expands to a separate word. In contexts where it is performed,
those words are subject to further word splitting and pathname expansion. When the expansion
occurs within double quotes, it expands to a single word with the value of each parameter
separated by the first character of the | FS special variable. That is, "$*" isequivaent to
"$1c$2c...", where cisthefirst character of the value of the IFS variable. If IFSisunset, the
parameters are separated by spaces. If IFSisnull, the parameters are joined without intervening
Separators.

@ Expandsto the positiona parameters, starting from one. In contexts where word splitting is
performed, this expands each positional parameter to a separate word; if not within double quotes,
these words are subject to word splitting. In contexts where word splitting is not performed, this
expandsto a single word with each positional parameter separated by a space. When the
expansion occurs within double quotes, each parameter expands to a separate word. That is, "$@"
isequivalent to "$1" "$2" ... If the double-quoted expansion occurs within aword, the expansion
of the first parameter is joined with the beginning part of the original word, and the expansion of
the last parameter isjoined with the last part of the original word. When there are no positional
parameters, "$@" and $@ expand to nothing (i.e., they are removed).

Expandsto the number of positional parametersin decimal.

? Expandsto the exit status of the most recently executed foreground pipeline.

- Expandsto the current option flags as specified upon invocation, by the set builtin command, or
those set by the shell itself (such asthe -i option).

$ Expandsto the process ID of the shell. In asubshell, it expands to the process ID of the current
shell, not the subshell.

I Expandsto the process ID of the job most recently placed into the background, whether executed
as an asynchronous command or using the bg builtin (see JOB CONTROL below).

0 Expandsto the name of the shell or shell script. Thisis set at shell initialization. If bash is
invoked with afile of commands, $0 is set to the name of that file. If bash is started with the -c
option, then $0 is set to the first argument after the string to be executed, if oneis present.
Otherwise, it is set to the filename used to invoke bash, as given by argument zero.

Shell Variables
The following variables are set by the shell:

At shell startup, set to the pathname used to invoke the shell or shell script being executed as
passed in the environment or argument list. Subsequently, expands to the last argument to the
previous simple command executed in the foreground, after expansion. Also set to the full
pathname used to invoke each command executed and placed in the environment exported to that
command. When checking mail, this parameter holds the name of the mail file currently being
checked.

BASH

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Expands to the full filename used to invoke this instance of bash.
BASHOPTS
A colon-separated list of enabled shell options. Each word in thelist isavalid argument for the -s
option to the shopt builtin command (see SHELL BUILTIN COMMANDS below). The options
appearing in BASHOPT S are those reported as on by shopt. If thisvariable isin the environment
when bash starts up, each shell option in the list will be enabled before reading any startup files.
Thisvariableis read-only.
BASHPID
Expands to the process ID of the current bash process. Thisdiffersfrom $$ under certain
circumstances, such as subshells that do not require bash to be re-initialized. Assignmentsto
BASHPID have no effect. If BASHPID isunset, it losesits special properties, even if itis
subsequently reset.
BASH_ALIASES
An associative array variable whose members correspond to the internal list of aliases as
maintained by the alias builtin. Elements added to this array appear in the alias list; however,
unsetting array elements currently does not cause aliases to be removed from the aliaslist. If
BASH_ALIASESisunset, it losesits specia properties, even if it is subsequently reset.
BASH_ARGC
An array variable whose values are the number of parameters in each frame of the current bash
execution call stack. The number of parameters to the current subroutine (shell function or script
executed with . or source) is at the top of the stack. When a subroutine is executed, the number of
parameters passed is pushed onto BASH_ARGC. The shell setsBASH_ARGC only whenin
extended debugging mode (see the description of the extdebug option to the shopt builtin below).
Setting extdebug after the shell has started to execute a script, or referencing this variable when
extdebug is not set, may result in inconsistent values.
BASH_ARGV
An array variable containing all of the parametersin the current bash execution call stack. The
final parameter of the last subroutine call is at the top of the stack; the first parameter of the initial
call is at the bottom. When a subroutine is executed, the parameters supplied are pushed onto
BASH_ARGV. Theshell setsBASH_ARGYV only when in extended debugging mode (see the
description of the extdebug option to the shopt builtin below). Setting extdebug after the shell has
started to execute a script, or referencing this variable when extdebug is not set, may result in
inconsistent values.
BASH_ARGVO0
When referenced, this variable expands to the name of the shell or shell script (identical to $0; see
the description of special parameter 0 above). Assignment to BASH ARGV causes the value
assigned to also be assigned to $0. If BASH_ARGVO0isunset, it loses its special properties, even
if it is subsequently reset.
BASH_CMDS
An associative array variable whose members correspond to the internal hash table of commands

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

as maintained by the hash builtin. Elements added to this array appear in the hash table; however,
unsetting array elements currently does not cause command names to be removed from the hash
table. If BASH_CMDSisunset, it losesits special properties, evenif it is subsequently reset.
BASH_COMMAND
The command currently being executed or about to be executed, unless the shell is executing a
command as the result of atrap, in which case it is the command executing at the time of the trap.
If BASH_COMMAND isunset, it losesits special properties, even if it is subsequently reset.
BASH _EXECUTION_STRING
The command argument to the -c invocation option.
BASH_LINENO
An array variable whose members are the line numbers in source files where each corresponding
member of FUNCNAME wasinvoked. ${BASH_LINENOJ[$i]} isthe line number in the source
file ({BASH_SOURCE[$i+1]}) where §{FUNCNAME][$i]} was called (or
HBASH_LINENO[S$i-1]} if referenced within another shell function). Use LINENO to obtain the
current line number.
BASH L OADABLES PATH
A colon-separated list of directoriesin which the shell looks for dynamically loadable builtins
specified by the enable command.
BASH_REMATCH
An array variable whose members are assigned by the =~ binary operator to the [[conditional
command. The element with index O is the portion of the string matching the entire regular
expression. The element with index n is the portion of the string matching the nth parenthesized
subexpression.
BASH_SOURCE
An array variable whose members are the source filenames where the corresponding shell function
names in the FUNCNAME array variable are defined. The shell function {FUNCNAME[$i]} is
defined in the file ${BASH_SOURCE[$i]} and called from ${BASH_SOURCE[$i+1]}.
BASH_SUBSHELL
Incremented by one within each subshell or subshell environment when the shell begins executing
in that environment. Theinitial valueis0. If BASH_SUBSHELL isunset, it losesits special
properties, even if it is subsequently reset.
BASH VERSINFO
A readonly array variable whose members hold version information for this instance of bash. The
values assigned to the array members are as follows:

BASH VERSINFOIQ] The major version number (the release).
BASH VERSINFO[1] The minor version number (the version).
BASH_VERSINFO[2] The patch level.

BASH_VERSINFOI[3] The build version.
BASH_VERSINFO[4] The release status (e.g., betal).
BASH_VERSINFOI[5] Thevalueof MACHTY PE.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

BASH_VERSION
Expands to a string describing the version of this instance of bash.

COMP_CWORD
Anindex into {COMP_WORDS} of the word containing the current cursor position. This
variable is available only in shell functions invoked by the programmable completion facilities (see
Programmable Completion below).

COMP_KEY
The key (or fina key of akey sequence) used to invoke the current completion function.

COMP_LINE
The current command line. Thisvariable isavailable only in shell functions and external
commands invoked by the programmabl e completion facilities (see Programmable Completion
below).

COMP_POINT
The index of the current cursor position relative to the beginning of the current command. If the
current cursor position is at the end of the current command, the value of this variableis equa to
${#COMP_LINE}. Thisvariableisavailable only in shell functions and external commands
invoked by the programmable completion facilities (see Programmable Completion below).

COMP_TYPE
Set to an integer value corresponding to the type of completion attempted that caused a completion
function to be called: TAB, for normal completion, ?, for listing completions after successive tabs,
I, for listing alternatives on partial word completion, @, to list completions if the word is not
unmodified, or %, for menu completion. Thisvariable isavailable only in shell functions and
external commands invoked by the programmable completion facilities (see Programmable
Completion below).

COMP_WORDBREAKS
The set of charactersthat the readline library treats as word separators when performing word
completion. If COMP_WORDBREAKS isunset, it losesits specia properties, evenif itis
subsequently reset.

COMP_WORDS
An array variable (see Arrays below) consisting of the individual words in the current command
line. Thelineis split into words as readline would split it, using COMP_WORDBREAK S as
described above. Thisvariableisavailable only in shell functions invoked by the programmable
completion facilities (see Programmable Completion below).

COPROC
An array variable (see Arrays below) created to hold the file descriptors for output from and input
to an unnamed coprocess (see Copr ocesses above).

DIRSTACK
An array variable (see Arrays below) containing the current contents of the directory stack.
Directories appear in the stack in the order they are displayed by the dirs builtin. Assigning to
members of this array variable may be used to modify directories already in the stack, but the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

pushd and popd builtins must be used to add and remove directories. Assignment to this variable
will not change the current directory. If DIRSTACK isunset, it losesits specia properties, even if
it is subsequently reset.

EPOCHREALTIME
Each time this parameter is referenced, it expands to the number of seconds since the Unix Epoch
(see time(3)) as afloating point value with micro-second granularity. Assignmentsto
EPOCHREALTIME areignored. If EPOCHREALTIME isunset, it losesits special properties,
evenif it is subsequently reset.

EPOCHSECONDS
Each time this parameter is referenced, it expands to the number of seconds since the Unix Epoch
(seetime(3)). Assignmentsto EPOCHSECONDS areignored. If EPOCHSECONDS isunset, it
loses its special properties, even if it is subsequently reset.

EUID
Expands to the effective user ID of the current user, initialized at shell startup. Thisvariableis
readonly.

FUNCNAME
An array variable containing the names of all shell functions currently in the execution call stack.
The element with index 0 is the name of any currently-executing shell function. The bottom-most
element (the one with the highest index) is"main". Thisvariable exists only when a shell function
isexecuting. Assignmentsto FUNCNAME have no effect. If FUNCNAME isunset, it losesits
special properties, even if it is subsequently reset.

This variable can be used with BASH_LINENO and BASH_SOURCE. Each element of
FUNCNAME has corresponding elementsin BASH_LINENO and BASH_SOURCE to describe
the call stack. For instance, {FUNCNAME[$i]} was called from the file
${BASH_SOURCE[$i+1]} at line number ${BASH_LINENOJ[$i]}. Thecaller builtin displays the
current call stack using thisinformation.

GROUPS
An array variable containing the list of groups of which the current user isamember. Assignments
to GROUPS have no effect. If GROUPS isunset, it losesits special properties, evenifitis
subsequently reset.

HISTCMD
The history number, or index in the history list, of the current command. Assignments to
HISTCMD areignored. If HISTCMD isunset, it losesits special properties, eveniif itis
subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to astring that uniquely describes the type of machine on which bash is
executing. The default is system-dependent.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function. When not in a script or
function, the value substituted is not guaranteed to be meaningful. If LINENO isunset, it losesits
special properties, even if it is subsequently reset.

MACHTYPE
Automatically set to astring that fully describes the system type on which bash is executing, in the
standard GNU cpu-company-system format. The default is system-dependent.

MAPFILE
An array variable (see Arrays below) created to hold the text read by the mapfile builtin when no
variable name is supplied.

OLDPWD
The previous working directory as set by the cd command.

OPTARG
The value of the last option argument processed by the getopts builtin command (see SHEL L
BUILTIN COMMANDS below).

OPTIND
The index of the next argument to be processed by the getopts builtin command (see SHELL
BUILTIN COMMANDS below).

OSTYPE
Automatically set to astring that describes the operating system on which bash is executing. The
default is system-dependent.

PIPESTATUS
An array variable (see Arrays below) containing alist of exit status values from the processesin
the most-recently-executed foreground pipeline (which may contain only a single command).

PPID
The process ID of the shell’s parent. Thisvariableis readonly.

PWD
The current working directory as set by the cd command.

RANDOM
Each time this parameter is referenced, it expands to arandom integer between 0 and 32767.
Assigning avalueto RANDOM initializes (seeds) the sequence of random numbers. If RANDOM
isunset, it losesits special properties, even if it is subsequently reset.

READLINE_ARGUMENT
Any numeric argument given to areadline command that was defined using "bind -x" (see SHELL
BUILTIN COMMANDS below) when it was invoked.

READLINE_LINE
The contents of the readline line buffer, for use with "bind -x" (see SHELL BUILTIN
COMMANDS below).

READLINE_MARK

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

The position of the mark (saved insertion point) in the readline line buffer, for use with "bind -x"
(see SHELL BUILTIN COMMANDS below). The characters between the insertion point and the
mark are often called the region.

READLINE_POINT
The position of the insertion point in the readline line buffer, for use with "bind -x" (see SHEL L
BUILTIN COMMANDS below).

REPLY
Set to the line of input read by the read builtin command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, it expands to the number of seconds since shell invocation.
If avalueisassigned to SECONDS, the value returned upon subsequent references is the number
of seconds since the assignment plus the value assigned. The number of seconds at shell
invocation and the current time are always determined by querying the system clock. If
SECONDS isunset, it losesits specia properties, eveniif it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list isavalid argument for the -o
option to the set builtin command (see SHELL BUILTIN COMMANDS below). The options
appearing in SHEL L OPT S are those reported as on by set -0. |If thisvariableisin the environment
when bash starts up, each shell option in the list will be enabled before reading any startup files.
Thisvariable isread-only.

SHLVL
Incremented by one each time an instance of bash is started.

SRANDOM
This variable expands to a 32-bit pseudo-random number each timeit is referenced. The random
number generator is not linear on systems that support /dev/urandom or arc4random, so each
returned number has no relationship to the numbers preceding it. The random number generator
cannot be seeded, so assignmentsto this variable have no effect. If SRANDOM isunset, it loses
its specia properties, even if it is subsequently reset.

uiD
Expands to the user ID of the current user, initialized at shell startup. Thisvariableis readonly.

The following variables are used by the shell. In some cases, bash assigns adefault value to avariable;
these cases are noted below.

BASH_COMPAT
Thevalueis used to set the shell’s compatibility level. See SHELL COMPATIBILITY MODE
below for a description of the various compatibility levels and their effects. The value may bea
decimal number (e.g., 4.2) or an integer (e.g., 42) corresponding to the desired compatibility level.
If BASH_COMPAT isunset or set to the empty string, the compatibility level is set to the default
for the current version. If BASH COMPAT isset to avauethat is not one of the valid

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

compatibility levels, the shell prints an error message and sets the compatibility level to the default
for the current version. The valid values correspond to the compatibility levels described below
under SHELL COMPATIBILITY MODE. For example, 4.2 and 42 are valid values that
correspond to the compat42 shopt option and set the compatibility level to 42. The current version
isalso avalid value.

BASH_ENV
If this parameter is set when bash is executing a shell script, its value isinterpreted as afilename
containing commands to initialize the shell, asin ~/.bashrc. The value of BASH_ENV is subjected
to parameter expansion, command substitution, and arithmetic expansion before being interpreted
asafilename. PATH isnot used to search for the resultant filename.

BASH_XTRACEFD
If set to an integer corresponding to avalid file descriptor, bash will write the trace output
generated when set -x is enabled to that file descriptor. The file descriptor is closed when
BASH_XTRACEFD isunset or assigned anew value. Unsetting BASH_XTRACEFD or
assigning it the empty string causes the trace output to be sent to the standard error. Note that
setting BASH_XTRACEFD to 2 (the standard error file descriptor) and then unsetting it will result
in the standard error being closed.

CDPATH
The search path for the cd command. Thisis acolon-separated list of directoriesin which the shell
looks for destination directories specified by the cd command. A samplevaueis”..~:/us".

CHILD_MAX
Set the number of exited child status values for the shell to remember. Bash will not alow this
value to be decreased below a POSI X-mandated minimum, and there is a maximum value
(currently 8192) that this may not exceed. The minimum value is system-dependent.

COLUMNS
Used by the select compound command to determine the terminal width when printing selection
lists. Automatically set if the checkwinsize option is enabled or in an interactive shell upon receipt
of aSIGWINCH.

COMPREPLY
An array variable from which bash reads the possible completions generated by a shell function
invoked by the programmable completion facility (see Programmable Completion below). Each
array element contains one possible completion.

EMACS
If bash finds this variable in the environment when the shell starts with value "t", it assumes that
the shell is running in an Emacs shell buffer and disables line editing.

ENV
Expanded and executed similarly to BASH_ENV (see INVOCATION above) when an interactive
shell isinvoked in posix mode.

EXECIGNORE
A colon-separated list of shell patterns (see Pattern Matching) defining the list of filenames to be

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

ignored by command search using PATH. Fileswhose full pathnames match one of these patterns
are not considered executable files for the purposes of completion and command execution via
PATH lookup. Thisdoes not affect the behavior of the[, test, and [[commands. Full pathnames
in the command hash table are not subject to EXECIGNORE. Usethisvariableto ignore shared
library files that have the executable bit set, but are not executable files. The pattern matching
honors the setting of the extglob shell option.
FCEDIT
The default editor for the fc builtin command.
FIGNORE
A colon-separated list of suffixes to ignore when performing filename completion (see
READLINE below). A filename whose suffix matches one of the entriesin FIGNORE is excluded
from the list of matched filenames. A samplevaueis".o:~".
FUNCNEST
If set to anumeric value greater than O, defines a maximum function nesting level. Function
invocations that exceed this nesting level will cause the current command to abort.
GLOBIGNORE
A colon-separated list of patterns defining the set of file namesto beignored by pathname
expansion. If afile name matched by a pathname expansion pattern also matches one of the
patternsin GLOBIGNORE, it isremoved from the list of matches.
HISTCONTROL
A colon-separated list of values controlling how commands are saved on the history list. If thelist
of values includes ignorespace, lines which begin with a space character are not saved in the
history list. A value of ignoredups causes lines matching the previous history entry to not be
saved. A value of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list before that
lineissaved. Any value not inthe abovelistisignored. If HISTCONTROL isunset, or does not
include avalid value, al lines read by the shell parser are saved on the history list, subject to the
value of HISTIGNORE. The second and subsequent lines of a multi-line compound command are
not tested, and are added to the history regardless of the value of HISTCONTROL.
HISTFILE
The name of the file in which command history is saved (see HISTORY below). The default value
is~/.bash_history. If unset, the command history is not saved when a shell exits.
HISTFILESIZE
The maximum number of lines contained in the history file. When thisvariableisassigned a
value, the history fileistruncated, if necessary, to contain no more than that number of lines by
removing the oldest entries. The history file is aso truncated to this size after writing it when a
shell exits. If thevalueisO, the history file istruncated to zero size. Non-numeric values and
numeric values less than zero inhibit truncation. The shell sets the default value to the value of
HISTSIZE after reading any startup files.
HISTIGNORE

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

A colon-separated list of patterns used to decide which command lines should be saved on the
history list. Each pattern is anchored at the beginning of the line and must match the complete line
(no implicit **’ is appended). Each pattern is tested against the line after the checks specified by
HISTCONTROL are applied. In addition to the normal shell pattern matching characters, ‘&’
matches the previous history line. ‘&’ may be escaped using a backslash; the backdash is
removed before attempting a match. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the history regardless of the value of HISTIGNORE.
The pattern matching honors the setting of the extglob shell option.

HISTSIZE
The number of commands to remember in the command history (see HISTORY below). If the
valueis 0, commands are not saved in the history list. Numeric values less than zero result in
every command being saved on the history list (thereis no limit). The shell sets the default value
to 500 after reading any startup files.

HISTTIMEFORMAT
If thisvariable is set and not null, its value is used as aformat string for strftime(3) to print the
time stamp associated with each history entry displayed by the history builtin. If thisvariableis
set, time stamps are written to the history file so they may be preserved across shell sessions. This
uses the history comment character to distinguish timestamps from other history lines.

HOME
The home directory of the current user; the default argument for the cd builtin command. The
value of thisvariableis also used when performing tilde expansion.

HOSTFILE
Contains the name of afile in the same format as /etc/hosts that should be read when the shell
needs to complete ahostname. The list of possible hosthame completions may be changed while
the shell is running; the next time hostname compl etion is attempted after the value is changed,
bash adds the contents of the new file to the existing list. If HOSTFILE is set, but has no value, or
does not name areadable file, bash attempts to read /etc/hosts to abtain the list of possible
hostname completions. When HOSTFILE is unset, the hostname list is cleared.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines into
words with theread builtin command. The default valueis*‘ <space><tab><newline>"".

IGNOREEOF
Controls the action of an interactive shell on receipt of an EOF character asthe soleinput. If set,
the value is the number of consecutive EOF characters which must be typed as the first characters
on an input line before bash exits. If the variable exists but does not have a numeric value, or has
no value, the default valueis 10. If it does not exist, EOF signifies the end of input to the shell.

INPUTRC
Thefilename for the readline startup file, overriding the default of ~/.inputrc (see READLINE
below).

INSIDE_EMACS
If this variable appears in the environment when the shell starts, bash assumesthat it is running

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

inside an Emacs shell buffer and may disable line editing, depending on the value of TERM.
LANG
Used to determine the locale category for any category not specifically selected with avariable
starting with LC _.
LC ALL
Thisvariable overrides the value of LANG and any other L C__ variable specifying alocale
category.
LC_COLLATE
This variable determines the collation order used when sorting the results of pathname expansion,
and determines the behavior of range expressions, equivalence classes, and collating sequences
within pathname expansion and pattern matching.
LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.
LC_MESSAGES
This variable determines the local e used to translate doubl e-quoted strings preceded by a $.
LC_NUMERIC
This variable determines the local e category used for number formatting.
LC_TIME
This variable determines the locale category used for data and time formatting.
LINES
Used by the select compound command to determine the column length for printing selection lists.
Automatically set if the checkwinsize option is enabled or in an interactive shell upon receipt of a
SIGWINCH.
MAIL
If this parameter is set to afile or directory name and the MAILPATH variableis not set, bash
informs the user of the arrival of mail in the specified file or Maildir-format directory.
MAILCHECK
Specifies how often (in seconds) bash checks for mail. The default is 60 seconds. Wheniit istime
to check for mail, the shell does so before displaying the primary prompt. If thisvariable is unset,
or set to avalue that is not a number greater than or equal to zero, the shell disables mail checking.
MAILPATH
A colon-separated list of filenames to be checked for mail. The message to be printed when mail
arrivesin a particular file may be specified by separating the filename from the message witha*?'.
When used in the text of the message, $_ expands to the name of the current mailfile. Example:
MAILPATH="/var/mail/bfox?"Y ou have mail":~/shell-mail ?'$_has mail!"™’
Bash can be configured to supply adefault value for this variable (there is no value by default), but
the location of the user mail filesthat it usesis system dependent (e.g., /var/mail/$USER).
OPTERR
If set to the value 1, bash displays error messages generated by the getopts builtin command (see

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

SHELL BUILTIN COMMANDSbelow). OPTERR isinitialized to 1 each timethe shell is
invoked or a shell script is executed.

PATH
The search path for commands. It is acolon-separated list of directoriesin which the shell looks
for commands (see COMMAND EXECUTION below). A zero-length (null) directory namein the
value of PATH indicates the current directory. A null directory name may appear as two adjacent
colons, or asan initia or trailing colon. The default path is system-dependent, and is set by the
administrator who installs bash. A common vaueis
“*Jusr/local/bin:/usr/local /sbin:/usr/bin:/usr/sbin:/bin:/sbin’’ .

POSIXLY_CORRECT
If this variable is in the environment when bash starts, the shell enters posix mode before reading
the startup files, asif the --posix invocation option had been supplied. If itisset whilethe shell is
running, bash enables posix mode, asif the command set -0 posix had been executed. When the
shell enters posix mode, it sets this variableif it was not already set.

PROMPT_COMMAND
If thisvariable is set, and is an array, the value of each set element is executed as a command prior
to issuing each primary prompt. If thisis set but not an array variable, itsvalueisused asa
command to execute instead.

PROMPT_DIRTRIM
If set to anumber greater than zero, the value is used as the number of trailing directory
components to retain when expanding the \w and \W prompt string escapes (see PROMPTING
below). Characters removed are replaced with an ellipsis.

PSO
The value of this parameter is expanded (see PROMPTING below) and displayed by interactive
shells after reading a command and before the command is executed.

PS1
The value of this parameter is expanded (see PROMPTING below) and used as the primary
prompt string. The default valueis‘‘\u@\h\$'".

pPSs2
The value of this parameter is expanded as with PS1 and used as the secondary prompt string. The
defaultis‘*>"".

PS3
The value of this parameter is used as the prompt for the select command (see SHEL L
GRAMMAR above).

P4
The value of this parameter is expanded as with PS1 and the value is printed before each command
bash displays during an execution trace. The first character of the expanded value of P34 is
replicated multiple times, as necessary, to indicate multiple levels of indirection. The defaultis*‘+

SHELL

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

This variable expands to the full pathname to the shell. If it isnot set when the shell starts, bash
assignsto it the full pathname of the current user’s login shell.

TIMEFORMAT
The value of this parameter is used as aformat string specifying how the timing information for
pipelines prefixed with the time reserved word should be displayed. The % character introduces an
escape sequence that is expanded to atime value or other information. The escape sequences and
their meanings are as follows; the braces denote optional portions.
% % A literal %.
%[p][I]JR Theelapsed timein seconds.
%[p][I]JU The number of CPU seconds spent in user mode.
%[p][I]S Thenumber of CPU seconds spent in system mode.
%P The CPU percentage, computed as (%U + %S) / %R.

The optional pisadigit specifying the precision, the number of fractional digits after a decimal
point. A value of 0 causes no decimal point or fraction to be output. At most three places after the
decimal point may be specified; values of p greater than 3 are changed to 3. If pisnot specified,
the value 3 is used.

The optional | specifies alonger format, including minutes, of the form MMmSSFFs. The value
of p determines whether or not the fraction is included.

If thisvariableis not set, bash acts asif it had the value $'\nreal\t% 3IR\nuser\t% 3lU\nsys\t% 3IS'.
If the valueisnull, no timing information is displayed. A trailing newline is added when the
format string is displayed.

TMOUT
If set to avalue greater than zero, TMOUT istreated as the default timeout for the read builtin.
The select command terminates if input does not arrive after TM OUT seconds when input is
coming from aterminal. In aninteractive shell, the value is interpreted as the number of seconds
towait for aline of input after issuing the primary prompt. Bash terminates after waiting for that
number of seconds if a complete line of input does not arrive.

TMPDIR
If set, bash usesits value as the name of a directory in which bash creates temporary filesfor the
shell’suse.

auto_resume
This variable controls how the shell interacts with the user and job control. If thisvariableis set,
single word simple commands without redirections are treated as candidates for resumption of an
existing stopped job. There is no ambiguity alowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selected. The name of astopped job, in this
context, is the command line used to start it. If set to the value exact, the string supplied must
match the name of a stopped job exactly; if set to substring, the string supplied needs to match a

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

substring of the name of a stopped job. The substring value provides functionality analogousto
the % ? job identifier (see JOB CONTROL below). If set to any other value, the supplied string
must be a prefix of a stopped job’s name; this provides functionality analogous to the % string job
identifier.

histchars
The two or three characters which control history expansion and tokenization (see HISTORY
EXPANSION below). Thefirst character isthe history expansion character, the character which
signals the start of a history expansion, normally ‘!". The second character is the quick substitution
character, which is used as shorthand for re-running the previous command entered, substituting
one string for another in the command. The defaultis‘~’. The optional third character isthe
character which indicates that the remainder of the line is a comment when found as the first
character of aword, normally ‘# . The history comment character causes history substitution to be
skipped for the remaining words on the line. 1t does not necessarily cause the shell parser to treat
the rest of the line as acomment.

Arrays
Bash provides one-dimensional indexed and associative array variables. Any variable may be used as
an indexed array; the declar e builtin will explicitly declare an array. There is no maximum limit on the
size of an array, nor any requirement that members be indexed or assigned contiguously. Indexed
arrays are referenced using integers (including arithmetic expressions) and are zero-based; associative
arrays are referenced using arbitrary strings. Unless otherwise noted, indexed array indices must be
non-negative integers.

Anindexed array is created automatically if any variable is assigned to using the syntax
name[subscript]=value. The subscript istreated as an arithmetic expression that must evaluate to a
number. To explicitly declare an indexed array, use declare -a name (see SHELL BUILTIN
COMMANDS below). declar e -a name[subscript] is also accepted; the subscript isignored.

Associative arrays are created using declare -A name.

Attributes may be specified for an array variable using the declare and readonly builtins. Each attribute
appliesto al members of an array.

Arrays are assigned to using compound assignments of the form name=(valuel ... valuen), where each
value may be of the form [subscript]=string. Indexed array assignments do not require anything but
string. Each valueinthelist is expanded using all the shell expansions described below under
EXPANSION. When assigning to indexed arrays, if the optional brackets and subscript are supplied,
that index is assigned to; otherwise the index of the element assigned is the last index assigned to by
the statement plus one. Indexing starts at zero.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

When assigning to an associative array, the words in a compound assignment may be either assignment
statements, for which the subscript isrequired, or alist of words that is interpreted as a sequence of
alternating keys and values. name=(keyl valuel key2 value2 ...). These are treated identically to
name=([keyl]=valuel [key2]=value2 ...). Thefirst word in the list determines how the remaining
words are interpreted; all assignmentsin alist must be of the same type. When using key/value pairs,
the keys may not be missing or empty; afinal missing value is treated like the empty string.

This syntax is aso accepted by the declar e builtin. Individua array elements may be assigned to using
the name[subscript]=val ue syntax introduced above. When assigning to an indexed array, if nameis
subscripted by a negative number, that number is interpreted as relative to one greater than the
maximum index of name, so negative indices count back from the end of the array, and an index of -1
references the last element.

The += operator will append to an array variable when assigning using the compound assignment
syntax; see PARAMETERS above.

Any element of an array may be referenced using ${ name[subscript]}. The braces are required to
avoid conflicts with pathname expansion. If subscriptis @ or *, the word expands to all members of
name. These subscripts differ only when the word appears within double quotes. If theword is
double-quoted, ${ name[*]} expands to a single word with the value of each array member separated by
the first character of the | FS special variable, and ${ name[@]} expands each element of nameto a
separate word. When there are no array members, ${ name[@]} expands to nothing. If the double-
quoted expansion occurs within aword, the expansion of the first parameter is joined with the
beginning part of the original word, and the expansion of the last parameter is joined with the last part
of the original word. Thisis analogous to the expansion of the special parameters* and @ (see Special
Parameter s above). ${#namelsubscript]} expands to the length of ${ name[subscript]}. If subscriptis*
or @, the expansion is the number of elementsin the array. If the subscript used to reference an
element of an indexed array evaluates to a number less than zero, it isinterpreted as relative to one
greater than the maximum index of the array, so negative indices count back from the end of the array,
and an index of -1 references the last element.

Referencing an array variable without a subscript is equivalent to referencing the array with a subscript
of 0. Any reference to avariable using avalid subscript islegal, and bash will create an array if

necessary.

An array variableis considered set if a subscript has been assigned avalue. The null string isavalid
value.

It is possible to obtain the keys (indices) of an array aswell asthe values. ${'name[@]} and
${Iname[*]} expand to the indices assigned in array variable name. The treatment when in double

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

guotesis similar to the expansion of the specia parameters @ and * within double quotes.

The unset builtin is used to destroy arrays. unset name[subscript] destroys the array element at index
subscript, for both indexed and associative arrays. Negative subscripts to indexed arrays are
interpreted as described above. Unsetting the last element of an array variable does not unset the
variable. unset name, where name is an array, removes the entire array. unset name[subscript], where
subscript is* or @, behaves differently depending on whether name is an indexed or associative array.
If name is an associative array, this unsets the element with subscript * or @. If nameis an indexed
array, unset removes al of the elements but does not remove the array itself.

When using a variable name with a subscript as an argument to a command, such as with unset,
without using the word expansion syntax described above, the argument is subject to pathname
expansion. If pathname expansion is not desired, the argument should be quoted.

The declare, local, and readonly builtins each accept a -a option to specify an indexed array and a-A
option to specify an associative array. |f both options are supplied, -A takes precedence. Theread
builtin accepts a -a option to assign alist of words read from the standard input to an array. The set and
declare builtins display array valuesin away that allows them to be reused as assignments.

EXPANSION
Expansion is performed on the command line after it has been split into words. There are seven kinds
of expansion performed: brace expansion, tilde expansion, parameter and variable expansion,
command substitution, arithmetic expansion, word splitting, and pathname expansion.

The order of expansionsis. brace expansion; tilde expansion, parameter and variable expansion,
arithmetic expansion, and command substitution (done in aleft-to-right fashion); word splitting; and
pathname expansion.

On systems that can support it, there is an additional expansion available: process substitution. Thisis
performed at the same time as tilde, parameter, variable, and arithmetic expansion and command
substitution.

After these expansions are performed, quote characters present in the original word are removed unless
they have been quoted themselves (quote removal).

Only brace expansion, word splitting, and pathname expansion can increase the number of words of the
expansion; other expansions expand a single word to asingle word. The only exceptions to this are the
expansions of "$@" and "${name[@]}", and, in most cases, $* and ${ name[*]} as explained above
(see PARAMETERS).

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Brace Expansion
Brace expansion is a mechanism by which arbitrary strings may be generated. This mechanismis
similar to pathname expansion, but the filenames generated need not exist. Patternsto be brace
expanded take the form of an optional preamble, followed by either a series of comma-separated
strings or a sequence expression between a pair of braces, followed by an optional postscript. The
preambleis prefixed to each string contained within the braces, and the postscript is then appended to
each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order
ispreserved. For example, &d,c,b}e expandsinto ‘ ade ace abe'.

A sequence expression takes the form {x..y[..incr]}, where x and y are either integers or single letters,
and incr, an optional increment, is an integer. When integers are supplied, the expression expands to
each number between x and y, inclusive. Supplied integers may be prefixed with O to force each term
to have the same width. When either x or y begins with a zero, the shell attemptsto force al generated
terms to contain the same number of digits, zero-padding where necessary. When letters are supplied,
the expression expands to each character lexicographically between x and y, inclusive, using the
default C locale. Note that both x and y must be of the same type (integer or letter). When the
increment is supplied, it is used as the difference between each term. The default increment is1 or -1
as appropriate.

Brace expansion is performed before any other expansions, and any characters special to other
expansions are preserved in theresult. Itisstrictly textual. Bash does not apply any syntactic
interpretation to the context of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unguoted opening and closing braces, and at least
one unguoted comma or a valid sequence expression. Any incorrectly formed brace expansion is left
unchanged. A { or, may be quoted with a backslash to prevent its being considered part of abrace
expression. To avoid conflicts with parameter expansion, the string ${ is not considered eligible for
brace expansion, and inhibits brace expansion until the closing }.

This construct istypically used as shorthand when the common prefix of the strings to be generated is
longer than in the above example:

mkdir /usr/local/src/bash/{ old,new,dist,bugs}
or

chown root /usr/{ uch/{ ex,edit} lib/{ ex?.?* ,how_ex}}

Brace expansion introduces a slight incompatibility with historical versions of sh. sh does not treat
opening or closing braces specially when they appear as part of aword, and preserves them in the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

output. Bash removes braces from words as a consegquence of brace expansion. For example, aword
entered to sh asfile{1,2} appearsidenticaly in the output. The same word is output asfilel file2 after
expansion by bash. If strict compatibility with sh is desired, start bash with the +B option or disable
brace expansion with the +B option to the set command (see SHELL BUILTIN COMMANDS below).

Tilde Expansion
If aword begins with an unquoted tilde character (‘~'), all of the characters preceding the first
unquoted slash (or all characters, if there is no unquoted slash) are considered atilde-prefix. 1f none of
the charactersin the tilde-prefix are quoted, the charactersin the tilde-prefix following the tilde are
treated as a possible login name. If thislogin nameisthe null string, the tilde is replaced with the value
of the shell parameter HOME. If HOME is unset, the home directory of the user executing the shell is
substituted instead. Otherwise, the tilde-prefix is replaced with the home directory associated with the
specified login name.

If thetilde-prefix isa‘~+, the value of the shell variable PWD replaces the tilde-prefix. If thetilde-
prefix isa‘~-", the value of the shell variable OLDPWOD, if it is set, is substituted. If the characters
following the tilde in the tilde-prefix consist of anumber N, optionally prefixed by a‘+ ora‘-’, the
tilde-prefix is replaced with the corresponding element from the directory stack, asit would be
displayed by the dirs builtin invoked with the tilde-prefix as an argument. If the characters following
thetilde in the tilde-prefix consist of a number without aleading *+ or *-’, ‘+' is assumed.

If the login name isinvalid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is checked for unquoted tilde-prefixesimmediately following a: or the first
=. Inthese cases, tilde expansion is also performed. Consegquently, one may use filenames with tildes
in assignmentsto PATH, MAILPATH, and CDPATH, and the shell assigns the expanded value.

Bash aso performs tilde expansion on words satisfying the conditions of variable assignments (as
described above under PARAMETERS) when they appear as arguments to simple commands. Bash
does not do this, except for the declaration commands listed above, when in posix mode.

Parameter Expansion
The‘$' character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to
protect the variable to be expanded from characters immediately following it which could be
interpreted as part of the name.

When braces are used, the matching ending brace isthefirst ‘}’ not escaped by a backslash or within a

quoted string, and not within an embedded arithmetic expansion, command substitution, or parameter
expansion.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

${ parameter}
The value of parameter is substituted. The braces are required when parameter is a positional
parameter with more than one digit, or when parameter isfollowed by a character which is not to
be interpreted as part of its name. The parameter is a shell parameter as described above
PARAMETERYS) or an array reference (Arrays).

If the first character of parameter isan exclamation point (1), and parameter is not a nameref, it
introduces alevel of indirection. Bash usesthe value formed by expanding the rest of parameter asthe
new parameter; thisis then expanded and that value is used in the rest of the expansion, rather than the
expansion of the original parameter. Thisisknown asindirect expansion. The valueis subject to tilde
expansion, parameter expansion, command substitution, and arithmetic expansion. If parameter isa
nameref, this expands to the name of the parameter referenced by parameter instead of performing the
complete indirect expansion. The exceptions to this are the expansions of ${!prefix*} and

${ Iname[@]} described below. The exclamation point must immediately follow the left brace in order
to introduce indirection.

In each of the cases below, word is subject to tilde expansion, parameter expansion, command
substitution, and arithmetic expansion.

When not performing substring expansion, using the forms documented below (e.g., :-), bash testsfor a
parameter that is unset or null. Omitting the colon resultsin atest only for a parameter that is unset.

${ parameter : -word}
Use Default Values. If parameter isunset or null, the expansion of word is substituted. Otherwise,
the value of parameter is substituted.

${ parameter: =word}
Assign Default Values. If parameter is unset or null, the expansion of word is assigned to
parameter. The value of parameter isthen substituted. Positional parameters and special
parameters may not be assigned to in thisway.

${ parameter: ?word}
Display Error if Null or Unset. If parameter isnull or unset, the expansion of word (or a message
to that effect if word is not present) iswritten to the standard error and the shell, if it is not
interactive, exits. Otherwise, the value of parameter is substituted.

${ parameter: +word}
Use Alternate Value. If parameter is null or unset, nothing is substituted, otherwise the expansion
of word is substituted.

${ parameter : offset}

${ parameter: offset:length}
Substring Expansion. Expands to up to length characters of the value of parameter starting at the
character specified by offset. If parameter is @ or *, an indexed array subscripted by @ or *, or an

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

associative array name, the results differ as described below. [If length is omitted, expands to the
substring of the value of parameter starting at the character specified by offset and extending to the
end of the value. length and offset are arithmetic expressions (see ARITHMETIC EVALUATION
below).

If offset evaluates to a number less than zero, the value is used as an offset in characters from the
end of the value of parameter. If length evaluatesto a number less than zero, it isinterpreted as an
offset in characters from the end of the value of parameter rather than a number of characters, and
the expansion is the characters between offset and that result. Note that a negative offset must be
separated from the colon by at least one space to avoid being confused with the :- expansion.

If parameter is @ or *, the result is length positional parameters beginning at offset. A negative
offset is taken relative to one greater than the greatest positional parameter, so an offset of -1
evaluatesto the last positional parameter. It isan expansion error if length evaluates to a number
less than zero.

If parameter is an indexed array hame subscripted by @ or *, the result is the length members of
the array beginning with ${ parameter[offset]}. A negative offset istaken relative to one greater
than the maximum index of the specified array. It isan expansion error if length evaluatesto a
number less than zero.

Substring expansion applied to an associative array produces undefined results.

Substring indexing is zero-based unless the positional parameters are used, in which case the
indexing starts at 1 by default. If offset is0, and the positional parameters are used, $0 is prefixed
to the list.

${ ' prefix<}

${ ! prefix@}
Names matching prefix. Expands to the names of variables whose names begin with prefix,
separated by the first character of the | FS special variable. When @ is used and the expansion
appears within double quotes, each variable name expands to a separate word.

¥ 'name{ @]}

${ !namef*]}
List of array keys. If nameisan array variable, expands to the list of array indices (keys) assigned
in name. If nameisnot an array, expandsto 0 if nameis set and null otherwise. When @ is used
and the expansion appears within double quotes, each key expands to a separate word.

${ #parameter}

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Parameter length. The length in characters of the value of parameter is substituted. If parameter is
* or @, the value substituted is the number of positional parameters. If parameter isan array hame
subscripted by * or @, the value substituted is the number of elementsin the array. If parameter is
an indexed array name subscripted by a negative number, that number is interpreted as relative to
one greater than the maximum index of parameter, so negative indices count back from the end of
the array, and an index of -1 references the last element.

${ parameter#word}

${ parameter##wor d}
Remove matching prefix pattern. Theword is expanded to produce a pattern just asin pathname
expansion, and matched against the expanded value of parameter using the rules described under
Pattern Matching below. If the pattern matches the beginning of the value of parameter, then the
result of the expansion is the expanded value of parameter with the shortest matching pattern (the
“‘#" case) or the longest matching pattern (the *‘## ' case) deleted. If parameter is @ or *, the
pattern removal operation is applied to each positional parameter in turn, and the expansion is the
resultant list. If parameter isan array variable subscripted with @ or *, the pattern removal
operation is applied to each member of the array in turn, and the expansion is the resultant list.

${ parameter % wor d}

${ parameter % % word}
Remove matching suffix pattern. Theword isexpanded to produce a pattern just asin pathname
expansion, and matched against the expanded value of parameter using the rules described under
Pattern Matching below. If the pattern matches atrailing portion of the expanded value of
parameter, then the result of the expansion is the expanded value of parameter with the shortest
matching pattern (the ‘%'’ case) or the longest matching pattern (the ‘% %'’ case) deleted. If
parameter is @ or *, the pattern removal operation is applied to each positional parameter in turn,
and the expansion isthe resultant list. If parameter isan array variable subscripted with @ or *,
the pattern removal operation is applied to each member of the array in turn, and the expansion is
the resultant list.

${ parameter/pattern/string}

${ parameter//pattern/string}

${ parameter /#pattern/string}

${ parameter/% pattern/string}
Pattern substitution. The pattern is expanded to produce a pattern just asin pathname expansion.
Parameter is expanded and the longest match of pattern against its value is replaced with string.
string undergoes tilde expansion, parameter and variable expansion, arithmetic expansion,
command and process substitution, and quote removal. The match is performed using the rules
described under Pattern Matching below. In the first form above, only the first match is replaced.
If there are two slashes separating parameter and pattern (the second form above), all matches of

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

pattern are replaced with string. If patternis preceded by # (the third form above), it must match at
the beginning of the expanded value of parameter. If pattern is preceded by % (the fourth form
above), it must match at the end of the expanded value of parameter. If the expansion of string is
null, matches of pattern are deleted. If string is null, matches of pattern are deleted and the /
following pattern may be omitted.

If the patsub_replacement shell option is enabled using shopt, any unquoted instances of & in
string are replaced with the matching portion of pattern.

Quoting any part of string inhibits replacement in the expansion of the quoted portion, including
replacement strings stored in shell variables. Backslash will escape & in string; the backslash is
removed in order to permit aliteral & in the replacement string. Backslash can also be used to
escape a backslash; \\ resultsin aliteral backslash in the replacement. Users should take care if
string is double-quoted to avoid unwanted interactions between the backslash and double-quoting,
since backslash has special meaning within double quotes. Pattern substitution performs the check
for unquoted & after expanding string; shell programmers should quote any occurrences of & they
want to be taken literally in the replacement and ensure any instances of & they want to be
replaced are unquoted.

If the nocasematch shell option is enabled, the match is performed without regard to the case of
alphabetic characters. If parameter is @ or *, the substitution operation is applied to each
positional parameter in turn, and the expansion is the resultant list. If parameter is an array
variable subscripted with @ or *, the substitution operation is applied to each member of the array
in turn, and the expansion is the resultant list.

${ parameter” pattern}

${ parameter pattern}

${ parameter ,pattern}

${ parameter,,pattern}
Case modification. This expansion maodifies the case of aphabetic charactersin parameter. The
pattern is expanded to produce a pattern just as in pathname expansion. Each character in the
expanded value of parameter istested against pattern, and, if it matches the pattern, its case is
converted. The pattern should not attempt to match more than one character. The” operator
converts lowercase | etters matching pattern to uppercase; the , operator converts matching
uppercase lettersto lowercase. The” and ,, expansions convert each matched character in the
expanded value; the™ and , expansions match and convert only the first character in the expanded
value. If patternisomitted, it istreated like a ?, which matches every character. If parameter is @
or *, the case modification operation is applied to each positional parameter in turn, and the
expansion isthe resultant list. If parameter isan array variable subscripted with @ or *, the case
modification operation is applied to each member of the array in turn, and the expansion is the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1)

FreeBSD General Commands Manual BASH(1)

resultant list.

${ parameter @operator}
Parameter transformation. The expansion is either atransformation of the value of parameter or
information about parameter itself, depending on the value of operator. Each operator isasingle

letter:

U Theexpansionisastring that isthe value of parameter with lowercase alphabetic characters
converted to uppercase.

u Theexpansionisastring that isthe value of parameter with the first character converted to
uppercase, if it is aphabetic.

L Theexpansionisastring that isthe value of parameter with uppercase alphabetic characters
converted to lowercase.

Q Theexpansionisastring that isthe value of parameter quoted in aformat that can be reused as
input.

E Theexpansionisastring that isthe value of parameter with backs ash escape sequences
expanded aswith the $'..."” quoting mechanism.

P Theexpansionisastring that is the result of expanding the value of parameter asif it werea
prompt string (see PROMPTING below).

A Theexpansionisastring in the form of an assignment statement or declar e command that, if
evaluated, will recreate parameter with its attributes and value.

K Produces a possibly-quoted version of the value of parameter, except that it prints the values
of indexed and associative arrays as a sequence of quoted key-value pairs (see Arrays above).

a Theexpansionisastring consisting of flag values representing parameter’ s attributes.

k LiketheK transformation, but expands the keys and values of indexed and associative arrays

to separate words after word splitting.

If parameter is @ or *, the operation is applied to each positional parameter in turn, and the
expansion isthe resultant list. If parameter is an array variable subscripted with @ or *, the
operation is applied to each member of the array in turn, and the expansion is the resultant list.

The result of the expansion is subject to word splitting and pathname expansion as described
below.

Command Substitution
Command substitution allows the output of a command to replace the command name. There are two

forms;

$(command)

or

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

‘command’

Bash performs the expansion by executing command in a subshell environment and replacing the
command substitution with the standard output of the command, with any trailing newlines deleted.
Embedded newlines are not deleted, but they may be removed during word splitting. The command
substitution $(cat file) can be replaced by the equivalent but faster $(< file).

When the old-style backquote form of substitution is used, backslash retains its literal meaning except
when followed by $, *, or \. The first backquote not preceded by a backslash terminates the command
substitution. When using the $(command) form, all characters between the parentheses make up the
command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape the inner
backquotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not
performed on the results.

Arithmetic Expansion
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the
result. Theformat for arithmetic expansioniis:

$((expression))

The expression undergoes the same expansions asiif it were within double quotes, but double quote
charactersin expression are not treated specially and are removed. All tokens in the expression
undergo parameter and variable expansion, command substitution, and quote removal. Theresultis
treated as the arithmetic expression to be evaluated. Arithmetic expansions may be nested.

The evaluation is performed according to the rules listed below under ARITHMETIC EVALUATION.
If expression isinvalid, bash prints a message indicating failure and no substitution occurs.

Process Substitution
Process substitution allows a process' s input or output to be referred to using afilename. It takes the
form of <(list) or >(list). The processlist isrun asynchronously, and itsinput or output appears as a
filename. Thisfilename is passed as an argument to the current command as the result of the
expansion. If the >(list) form is used, writing to the file will provideinput for list. If the <(list) formis
used, the file passed as an argument should be read to obtain the output of list. Process substitution is
supported on systems that support named pipes (FIFOs) or the /dev/fd method of naming open files.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

When available, process substitution is performed simultaneously with parameter and variable
expansion, command substitution, and arithmetic expansion.

Word Splitting
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion
that did not occur within double quotes for word splitting.

The shell treats each character of |FS as adeimiter, and splits the results of the other expansions into
words using these characters as field terminators. If IFSisunset, or itsvaueis exactly
<gpace><tab><newline>, the default, then sequences of <space>, <tab>, and <newline> at the
beginning and end of the results of the previous expansions are ignored, and any sequence of |FS
characters not at the beginning or end servesto delimit words. If IFS has a value other than the default,
then sequences of the whitespace characters space, tab, and newline are ignored at the beginning and
end of the word, aslong as the whitespace character isin the value of 1FS (an | FS whitespace
character). Any character in IFSthat isnot | FS whitespace, along with any adjacent | FS whitespace
characters, delimitsafield. A sequence of | FS whitespace charactersis also treated as adelimiter. If
the value of IFSisnull, no word splitting occurs.

Explicit null arguments ("" or ') are retained and passed to commands as empty strings. Unguoted
implicit null arguments, resulting from the expansion of parameters that have no values, are removed.
If a parameter with no value is expanded within double quotes, a null argument results and is retained
and passed to a command as an empty string. When a quoted null argument appears as part of aword
whose expansion is non-null, the null argument isremoved. That is, the word -d’’ becomes -d after
word splitting and null argument removal.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion
After word splitting, unless the -f option has been set, bash scans each word for the characters *, ?, and
[. If one of these characters appears, and is not quoted, then the word is regarded as a pattern, and
replaced with an aphabetically sorted list of filenames matching the pattern (see Pattern Matching
below). If no matching filenames are found, and the shell option nullglob is not enabled, theword is
left unchanged. If the nullglob option is set, and no matches are found, the word isremoved. If the
failglob shell option is set, and no matches are found, an error message is printed and the command is
not executed. If the shell option nocaseglob is enabled, the match is performed without regard to the
case of aphabetic characters. When a pattern is used for pathname expansion, the character **.’”’ at the
start of a name or immediately following a slash must be matched explicitly, unless the shell option
dotglob is set. In order to match the filenames*‘.”” and **..”’, the pattern must begin with **.”" (for
example, ‘*.?7"), even if dotglob is set. If the globskipdots shell option is enabled, the filenames**.”’
and ‘*..’" are never matched, even if the pattern beginswith a‘*.””. When not matching pathnames, the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

.’ character is not treated specially. When matching a pathname, the slash character must always be
matched explicitly by a dlash in the pattern, but in other matching contexts it can be matched by a
special pattern character as described below under Pattern Matching. See the description of shopt
below under SHELL BUILTIN COMMANDS for adescription of the nocaseglob, nullglob,
globskipdots, failglob, and dotglob shell options.

The GLOBIGNORE shell variable may be used to restrict the set of file names matching a pattern. If
GLOBIGNORE is set, each matching file name that also matches one of the patternsin

GL OBIGNORE isremoved from the list of matches. If the nocaseglob option is set, the matching
against the patternsin GLOBIGNORE is performed without regard to case. Thefilenames‘*.”” and

‘.. are awaysignored when GL OBIGNORE is set and not null. However, setting GL OBIGNORE to
anon-null value has the effect of enabling the dotglob shell option, so all other filenames beginning
witha‘*.”” will match. To get the old behavior of ignoring filenames beginning witha**.””, make

‘. *'" one of the patternsin GLOBIGNORE. The dotglob option is disabled when GLOBIGNORE is

unset. The pattern matching honors the setting of the extglob shell option.
Pattern Matching

Any character that appears in a pattern, other than the special pattern characters described below,
matchesitself. The NUL character may not occur in a pattern. A backslash escapes the following
character; the escaping backslash is discarded when matching. The special pattern characters must be
quoted if they are to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string. When the globstar shell option is enabled, and *
is used in a pathname expansion context, two adjacent *s used as a single pattern will match
al files and zero or more directories and subdirectories. If followed by a/, two adjacent *s
will match only directories and subdirectories.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by a hyphen
denotes arange expression; any character that falls between those two characters, inclusive,
using the current local€' s collating sequence and character set, is matched. If thefirst
character following the[isa! or a” then any character not enclosed is matched. The sorting
order of charactersin range expressions, and the characters included in the range, are
determined by the current locale and the values of the LC_COLLATE or LC_ALL shell
variables, if set. To obtain the traditional interpretation of range expressions, where [a-d] is
equivalent to [abcd], set value of the LC_ALL shell variableto C, or enable the
globasciiranges shell option. A - may be matched by including it as the first or last character
inthe set. A] may be matched by including it as the first character in the set.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Within [and], character classes can be specified using the syntax [:class:], where classis one
of the following classes defined in the POSI X standard:

alnum alpha ascii blank cntrl digit graph lower print punct space upper word xdigit

A character class matches any character belonging to that class. The word character class
matches letters, digits, and the character _.

Within [and], an equivalence class can be specified using the syntax [=c=], which matches all
characters with the same collation weight (as defined by the current locale) as the character c.

Within [and], the syntax [.symbol.] matches the collating symbol symbol.

If the extglob shell option is enabled using the shopt builtin, the shell recognizes several extended
pattern matching operators. In the following description, a pattern-list isalist of one or more patterns
separated by a|. Composite patterns may be formed using one or more of the following sub-patterns:

?(pattern-list)

Matches zero or one occurrence of the given patterns
*(pattern-list)

Matches zero or more occurrences of the given patterns
+(pattern-list)

Matches one or more occurrences of the given patterns
@(pattern-list)

Matches one of the given patterns
I (pattern-list)

Matches anything except one of the given patterns

Theextglob option changes the behavior of the parser, since the parentheses are normally treated as
operators with syntactic meaning. To ensure that extended matching patterns are parsed correctly,
make sure that extglob is enabled before parsing constructs containing the patterns, including shell
functions and command substitutions.

When matching filenames, the dotglob shell option determines the set of filenames that are tested:
when dotglob is enabled, the set of filenamesincludes al files beginning with**.”’, but**.”" and **..”’
must be matched by a pattern or sub-pattern that begins with adot; when it is disabled, the set does not
include any filenames beginning with **.”" unless the pattern or sub-pattern beginswitha‘‘.”’. As
above, **.”’ only has a special meaning when matching filenames.

Complicated extended pattern matching against long stringsis slow, especially when the patterns

contain aternations and the strings contain multiple matches. Using separate matches against shorter
strings, or using arrays of strings instead of a single long string, may be faster.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Quote Removal
After the preceding expansions, all unquoted occurrences of the characters\, ', and " that did not result
from one of the above expansions are removed.

REDIRECTION
Before acommand is executed, its input and output may be redirected using a special notation
interpreted by the shell. Redirection allows commands' file handles to be duplicated, opened, closed,
made to refer to different files, and can change the files the command reads from and writes to.
Redirection may also be used to modify file handles in the current shell execution environment. The
following redirection operators may precede or appear anywhere within a simple command or may
follow acommand. Redirections are processed in the order they appear, from left to right.

Each redirection that may be preceded by afile descriptor number may instead be preceded by aword
of theform {varname}. In thiscase, for each redirection operator except >& - and <& -, the shell will
allocate afile descriptor greater than or equal to 10 and assign it to varname. If >&- or <&- is preceded
by { varname}, the value of varname defines the file descriptor to close. If {varname} is supplied, the
redirection persists beyond the scope of the command, allowing the shell programmer to manage the
file descriptor’s lifetime manually. The varredir_close shell option manages this behavior.

In the following descriptions, if the file descriptor number is omitted, and the first character of the
redirection operator is <, the redirection refersto the standard input (file descriptor 0). If thefirst
character of the redirection operator is >, the redirection refers to the standard output (file descriptor 1).
The word following the redirection operator in the following descriptions, unless otherwise noted, is
subjected to brace expansion, tilde expansion, parameter and variable expansion, command
substitution, arithmetic expansion, quote removal, pathname expansion, and word splitting. If it
expands to more than one word, bash reports an error.
Note that the order of redirectionsis significant. For example, the command

Is>dirlist 2>& 1
directs both standard output and standard error to the file dirlist, while the command

[s2>& 1> dirlist

directs only the standard output to file dirlist, because the standard error was duplicated from the
standard output before the standard output was redirected to dirlist.

Bash handles severa filenames specially when they are used in redirections, as described in the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

following table. If the operating system on which bash is running provides these special files, bash will
use them; otherwise it will emulate them internally with the behavior described below.

/dev/fd/fd
If fdisavalid integer, file descriptor fd is duplicated.
/dev/stdin
File descriptor O is duplicated.
/dev/stdout
File descriptor 1 isduplicated.
/dev/stderr
File descriptor 2 is duplicated.
/dev/tcp/host/port
If host isavalid hostname or Internet address, and port is an integer port number or service
name, bash attempts to open the corresponding TCP socket.
/dev/udp/host/port
If host is avalid hostname or Internet address, and port is an integer port number or service
name, bash attempts to open the corresponding UDP socket.

A failureto open or create afile causes the redirection to fail.

Redirections using file descriptors greater than 9 should be used with care, asthey may conflict with
file descriptors the shell usesinternaly.

Redirecting I nput
Redirection of input causes the file whose name results from the expansion of word to be opened for
reading on file descriptor n, or the standard input (file descriptor 0) if nis not specified.
The genera format for redirecting input is:

[n]<word

Redirecting Output
Redirection of output causes the file whose name results from the expansion of word to be opened for
writing on file descriptor n, or the standard output (file descriptor 1) if nisnot specified. If thefile
does not exist it is created; if it does exist it is truncated to zero size.

The genera format for redirecting output is:

[n]>word

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

If the redirection operator is >, and the noclobber option to the set builtin has been enabled, the
redirection will fail if the file whose name results from the expansion of word exists and is aregular
file. If the redirection operator is>|, or the redirection operator is > and the noclobber option to the set
builtin command is not enabled, the redirection is attempted even if the file named by word exists.
Appending Redirected Output
Redirection of output in this fashion causes the file whose name results from the expansion of word to
be opened for appending on file descriptor n, or the standard output (file descriptor 1) if nisnot
specified. If thefile doesnot exist it is created.
The general format for appending output is:
[n]>>word
Redirecting Standard Output and Standard Error
This construct allows both the standard output (file descriptor 1) and the standard error output (file
descriptor 2) to be redirected to the file whose name is the expansion of word.
There are two formats for redirecting standard output and standard error:
& >word
and
>& word
Of the two forms, thefirst is preferred. Thisis semantically equivalent to

>word 2>& 1

When using the second form, word may not expand to a number or -. If it does, other redirection
operators apply (see Duplicating File Descriptor s below) for compatibility reasons.

Appending Standard Output and Standard Error
This construct allows both the standard output (file descriptor 1) and the standard error output (file
descriptor 2) to be appended to the file whose name is the expansion of word.
The format for appending standard output and standard error is:

& >>word

Thisis semantically equivaent to

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

>>word 2>& 1
(see Duplicating File Descriptor s below).

Here Documents
This type of redirection instructs the shell to read input from the current source until aline containing
only delimiter (with no trailing blanks) is seen. All of the linesread up to that point are then used as
the standard input (or file descriptor nif nis specified) for acommand.

The format of here-documentsis:

[n]<<[-]word
here-document
delimiter

No parameter and variable expansion, command substitution, arithmetic expansion, or pathname
expansion is performed on word. If any part of word is quoted, the delimiter isthe result of quote
remova on word, and the lines in the here-document are not expanded. If word is unquoted, all lines
of the here-document are subjected to parameter expansion, command substitution, and arithmetic
expansion, the character sequence \<newline> isignored, and \ must be used to quote the characters \,
$, and .

If the redirection operator is <<-, then all leading tab characters are stripped from input lines and the
line containing delimiter. This allows here-documents within shell scripts to be indented in a natural

fashion.

Here Strings
A variant of here documents, the format is:

[n]<<<word
The word undergoes tilde expansion, parameter and variable expansion, command substitution,
arithmetic expansion, and quote removal. Pathname expansion and word splitting are not performed.
Theresult is supplied as a single string, with a newline appended, to the command on its standard input

(or file descriptor nif nis specified).

Duplicating File Descriptors
The redirection operator

[n]<& word

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

is used to duplicate input file descriptors. If word expands to one or more digits, the file descriptor
denoted by n is made to be a copy of that file descriptor. If the digitsin word do not specify afile
descriptor open for input, aredirection error occurs. If word evaluatesto -, file descriptor nis closed.
If nisnot specified, the standard input (file descriptor 0) is used.
The operator

[n]>& word
is used similarly to duplicate output file descriptors. If nis not specified, the standard output (file
descriptor 1) isused. If the digitsinword do not specify afile descriptor open for output, aredirection
error occurs. If word evaluatesto -, file descriptor nisclosed. Asaspecia case, if nisomitted, and

word does not expand to one or more digits or -, the standard output and standard error are redirected
as described previoudly.

Moving File Descriptors
The redirection operator

[n]<&digit-

moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0) if nis not
specified. digit is closed after being duplicated to n.

Similarly, the redirection operator
[n]>& digit-

moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1) if nisnot
specified.

Opening File Descriptorsfor Reading and Writing
The redirection operator

[n]<>word

causes the file whose name is the expansion of word to be opened for both reading and writing on file
descriptor n, or on file descriptor O if nisnot specified. If thefile doesnot exigt, it is created.

ALIASES
Aliases allow astring to be substituted for aword when it is used as the first word of asimple

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

command. The shell maintainsalist of aliases that may be set and unset with the alias and unalias
builtin commands (see SHELL BUILTIN COMMANDS below). The first word of each simple
command, if unquoted, is checked to seeif it hasan dias. If so, that word is replaced by the text of the
alias. The characters/, $, *, and = and any of the shell metacharacters or quoting characters listed
above may not appear in an alias name. The replacement text may contain any valid shell input,
including shell metacharacters. Thefirst word of the replacement text is tested for aliases, but aword
that isidentical to an alias being expanded is not expanded a second time. This means that one may
dliaslstols-F, for instance, and bash does not try to recursively expand the replacement text. |f the
last character of the alias value is a blank, then the next command word following the aliasis also
checked for alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias command.

There is no mechanism for using arguments in the replacement text. If arguments are needed, use a
shell function (see FUNCTIONS below).

Aliases are not expanded when the shell is not interactive, unless the expand_aliases shell option is set
using shopt (see the description of shopt under SHELL BUILTIN COMMANDS below).

The rules concerning the definition and use of aiases are somewhat confusing. Bash aways reads at
least one complete line of input, and all lines that make up a compound command, before executing
any of the commands on that line or the compound command. Aliases are expanded when a command
isread, not when it is executed. Therefore, an alias definition appearing on the same line as another
command does not take effect until the next line of input isread. The commands following the alias
definition on that line are not affected by the new alias. Thisbehavior is aso an issue when functions
are executed. Aliases are expanded when afunction definition is read, not when the function is
executed, because afunction definition isitself acommand. As aconsequence, aliases defined in a
function are not available until after that function is executed. To be safe, aways put aias definitions
on a separate line, and do not use alias in compound commands.

For almost every purpose, aliases are superseded by shell functions.

FUNCTIONS

A shell function, defined as described above under SHELL GRAMMAR, stores a series of commands
for later execution. When the name of ashell function is used as a simple command name, the list of
commands associated with that function name is executed. Functions are executed in the context of the
current shell; no new processis created to interpret them (contrast this with the execution of a shell
script). When afunction is executed, the arguments to the function become the positional parameters
during its execution. The special parameter # is updated to reflect the change. Special parameter Ois
unchanged. Thefirst element of the FUNCNAME variableis set to the name of the function while the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

function is executing.

All other aspects of the shell execution environment are identical between afunction and its caller with
these exceptions. the DEBUG and RETURN traps (see the description of the trap builtin under SHELL
BUILTIN COMMANDS below) are not inherited unless the function has been given the tr ace attribute
(see the description of the declar e builtin below) or the -o functrace shell option has been enabled with
the set builtin (in which case all functions inherit the DEBUG and RETURN traps), and the ERR trap is
not inherited unless the -0 errtrace shell option has been enabled.

Variableslocal to the function may be declared with the local builtin command (local variables).
Ordinarily, variables and their values are shared between the function and itscaller. If avariableis
declared local, the variable s visible scope is restricted to that function and its children (including the
functionsit calls).

In the following description, the current scope is a currently- executing function. Previous scopes
consist of that function’s caller and so on, back to the "global" scope, where the shell is not executing
any shell function. Consequently, alocal variable at the current scopeis a variable declared using the
local or declar e builtins in the function that is currently executing.

Local variables "shadow" variables with the same name declared at previous scopes. For instance, a
local variable declared in afunction hides a global variable of the same name: references and
assignments refer to the local variable, leaving the global variable unmodified. When the function
returns, the global variable is once again visible.

The shell uses dynamic scoping to control avariable' s visibility within functions. With dynamic
scoping, visible variables and their values are a result of the sequence of function calls that caused
execution to reach the current function. The value of a variable that a function sees depends on its
value withinits caller, if any, whether that caller isthe "global" scope or another shell function. Thisis
also the value that alocal variable declaration "shadows', and the value that is restored when the
function returns.

For example, if avariable var is declared aslocal in function funcl, and funcl calls ancother function
func2, references to var made from within func2 will resolve to the local variable var from funcl,
shadowing any global variable named var.

The unset builtin also acts using the same dynamic scope: if avariableislocal to the current scope,
unset will unset it; otherwise the unset will refer to the variable found in any calling scope as described
above. If avariable at the current local scope is unset, it will remain so (appearing as unset) until itis
reset in that scope or until the function returns. Once the function returns, any instance of the variable
at aprevious scope will become visible. If the unset acts on avariable at a previous scope, any

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

instance of a variable with that name that had been shadowed will become visible (see below how the
localvar _unset shell option changes this behavior).

The FUNCNEST variable, if set to a numeric value greater than 0, defines a maximum function nesting
level. Function invocations that exceed the limit cause the entire command to abort.

If the builtin command return is executed in a function, the function completes and execution resumes
with the next command after the function call. Any command associated with the RETURN trap is
executed before execution resumes. When a function completes, the values of the positional
parameters and the special parameter # are restored to the values they had prior to the function’s
execution.

Function names and definitions may be listed with the -f option to the declar e or typeset builtin
commands. The -F option to declare or typeset will list the function names only (and optionally the
source file and line number, if the extdebug shell option is enabled). Functions may be exported so that
child shell processes (those created when executing a separate shell invocation) automatically have
them defined with the -f option to the export builtin. A function definition may be deleted using the -f
option to the unset builtin.

Functions may be recursive. The FUNCNEST variable may be used to limit the depth of the function
call stack and restrict the number of function invocations. By default, no limit isimposed on the
number of recursive calls.

ARITHMETIC EVALUATION
The shell allows arithmetic expressions to be evaluated, under certain circumstances (see the let and
declar e builtin commands, the ((compound command, and Arithmetic Expansion). Evaluation isdone
in fixed-width integers with no check for overflow, though division by 0 is trapped and flagged as an
error. The operators and their precedence, associativity, and values are the same as in the C language.
Thefollowing list of operatorsis grouped into levels of equal-precedence operators. The levels are
listed in order of decreasing precedence.

id++ id--
variable post-increment and post-decrement
-+ unary minus and plus
++id --id
variable pre-increment and pre-decrement
I ~ logical and bitwise negation
** exponentiation
* 1%
multiplication, division, remainder

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

+ - addition, subtraction
<< >>

left and right bitwise shifts
<=>=<>

comparison

equality and inequality
& bitwise AND
A bitwise exclusive OR
| bitwise OR
&&
logical AND
|| logical OR
expr?expr: expr
conditional operator
=*= =20 +=-=<<=>>= & == |=
assignment
exprl, expr2
comma

Shell variables are allowed as operands; parameter expansion is performed before the expression is
evaluated. Within an expression, shell variables may also be referenced by name without using the
parameter expansion syntax. A shell variable that is null or unset evaluates to 0 when referenced by
name without using the parameter expansion syntax. The value of avariableis evaluated as an
arithmetic expression when it is referenced, or when a variable which has been given the integer
attribute using declare -i isassigned avalue. A null value evaluatesto 0. A shell variable need not
have itsinteger attribute turned on to be used in an expression.

Integer constants follow the C language definition, without suffixes or character constants. Constants
with aleading O are interpreted as octal numbers. A leading Ox or 0X denotes hexadecimal.

Otherwise, numbers take the form [baset]n, where the optional base is a decimal humber between 2
and 64 representing the arithmetic base, and nisanumber in that base. If base# is omitted, then base
10isused. When specifying n, if anon-digit is required, the digits greater than 9 are represented by the
lowercase |etters, the uppercase letters, @, and _, in that order. If baseislessthan or equal to 36,
lowercase and uppercase |etters may be used interchangeably to represent numbers between 10 and 35.

Operators are evaluated in order of precedence. Sub-expressions in parentheses are evaluated first and
may override the precedence rules above.

CONDITIONAL EXPRESSIONS

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Conditional expressions are used by the [[compound command and the test and [builtin commands to
test file attributes and perform string and arithmetic comparisons. Thetest and [commands determine
their behavior based on the number of arguments; see the descriptions of those commands for any other
command-specific actions.

Expressions are formed from the following unary or binary primaries. Bash handles severa filenames
specially when they are used in expressions. If the operating system on which bash is running provides
these special files, bash will use them; otherwise it will emulate them internally with this behavior: If
any file argument to one of the primariesis of the form /dev/fd/n, then file descriptor n is checked. If
the file argument to one of the primariesis one of /dev/stdin, /dev/stdout, or /devistderr, file descriptor
0, 1, or 2, respectively, is checked.

Unless otherwise specified, primaries that operate on files follow symbolic links and operate on the
target of the link, rather than the link itself.

When used with [[, the < and > operators sort lexicographically using the current locale. The test
command sorts using ASCI| ordering.

-afile

Trueif file exists.
-b file

Trueif file existsand isablock special file.
-cfile

Trueif file exists and is a character specid file.
-d file

Trueif file exists and is adirectory.
-efile

Trueif file exists.
-f file

Trueif fileexistsand isaregular file.
-gfile

Trueif file exists and is set-group-id.
-h file

Trueif file existsand is a symbolic link.
-k file

Trueif fileexistsand its ‘' sticky’’ bit is set.
-p file

Trueif file existsand is a named pipe (FIFO).
-r file

Trueif file exists and is readable.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

-sfile
True if file exists and has a size greater than zero.
-t fd
Trueif file descriptor fd is open and refersto aterminal.
-u file
Trueif file exists and its set-user-id bit is set.
-w file
Trueif file exists and iswritable.
-x file
Trueif file exists and is executable.
-G file
Trueif file exists and is owned by the effective group id.
-L file
Trueif file existsand isasymbolic link.
-N file
Trueif file exists and has been modified since it was last read.
-O file
Trueif file exists and is owned by the effective user id.
-Sfile
Trueif file exists and is a socket.
filel -ef file2
Trueif filel and file2 refer to the same device and inode numbers.
filel -nt file2
Trueif filel is newer (according to modification date) than file2, or if filel exists and file2 does
not.
filel -ot file2
Trueif filel is older than file2, or if file2 exists and filel does not.
-0 optname
Trueif the shell option optname is enabled. Seethe list of options under the description of the -o
option to the set builtin below.
-V varname
True if the shell variable varname is set (has been assigned avalue).
-R varname
Trueif the shell variable varnameis set and is a name reference.
-z string
Trueif the length of string is zero.
string
-n string
Trueif the length of string is non-zero.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

stringl == string2

stringl = string2
Trueif the strings are equal. = should be used with the test command for POSIX conformance.
When used with the [[command, this performs pattern matching as described above (Compound
Commands).

stringl != string2
Trueif the strings are not equal .

stringl < string2
Trueif stringl sorts before string2 lexicographically.

stringl > string2
Trueif stringl sorts after string2 lexicographically.

argl OP arg2
OPisoneof -eq, -ng, -It, -lg, -gt, or -ge. These arithmetic binary operatorsreturn trueif argl is
equal to, not equal to, less than, less than or equal to, greater than, or greater than or equal to arg2,
respectively. Argl and arg2 may be positive or negative integers. When used with the [[
command, Argl and Arg2 are evaluated as arithmetic expressions (see ARITHMETIC
EVALUATION above).

SIMPLE COMMAND EXPANSION
When a simple command is executed, the shell performs the following expansions, assignments, and

redirections, from left to right, in the following order.

1. Thewordsthat the parser has marked as variable assignments (those preceding the command
name) and redirections are saved for later processing.

2. Thewordsthat are not variable assignments or redirections are expanded. If any words remain
after expansion, the first word is taken to be the name of the command and the remaining words
are the arguments.

3. Redirections are performed as described above under REDIRECTION.

4. Thetext after the = in each variable assignment undergoes tilde expansion, parameter expansion,
command substitution, arithmetic expansion, and quote removal before being assigned to the

variable.

If no command name results, the variable assignments affect the current shell environment. In the case

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

of such acommand (one that consists only of assignment statements and redirections), assignment
statements are performed before redirections. Otherwise, the variables are added to the environment of
the executed command and do not affect the current shell environment. If any of the assignments
attempts to assign avalue to areadonly variable, an error occurs, and the command exits with a non-
zero status.

If no command name results, redirections are performed, but do not affect the current shell
environment. A redirection error causes the command to exit with a non-zero status.

If there is acommand name left after expansion, execution proceeds as described below. Otherwise,
the command exits. If one of the expansions contained a command substitution, the exit status of the
command is the exit status of the last command substitution performed. If there were no command
substitutions, the command exits with a status of zero.

COMMAND EXECUTION
After acommand has been split into words, if it resultsin a simple command and an optional list of
arguments, the following actions are taken.

If the command name contains no slashes, the shell attemptsto locate it. If there exists a shell function
by that name, that function isinvoked as described above in FUNCTIONS. If the name does not match
afunction, the shell searchesfor it in thelist of shell builtins. 1f amatch isfound, that builtinis
invoked.

If the name is neither a shell function nor a builtin, and contains no slashes, bash searches each element
of the PATH for adirectory containing an executable file by that name. Bash uses a hash tableto
remember the full pathnames of executable files (see hash under SHELL BUILTIN COMMANDS
below). A full search of the directoriesin PATH is performed only if the command is not found in the
hash table. If the search is unsuccessful, the shell searches for a defined shell function named
command_not_found_handle. If that function exists, it isinvoked in a separate execution environment
with the original command and the original command’ s arguments as its arguments, and the function’s
exit status becomes the exit status of that subshell. If that function is not defined, the shell prints an
error message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, the shell executes the
named program in a separate execution environment. Argument 0 is set to the name given, and the
remaining arguments to the command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not adirectory, itis

assumed to be a shell script, afile containing shell commands, and the shell creates a new instance of
itself to executeit. Thissubshell reinitializesitself, so that the effect isasif anew shell had been

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

invoked to handle the script, with the exception that the locations of commands remembered by the
parent (see hash below under SHELL BUILTIN COMMANDS) are retained by the child.

If the program is afile beginning with #!, the remainder of the first line specifies an interpreter for the
program. The shell executes the specified interpreter on operating systems that do not handle this
executable format themselves. The arguments to the interpreter consist of a single optional argument
following the interpreter name on the first line of the program, followed by the name of the program,
followed by the command arguments, if any.

COMMAND EXECUTION ENVIRONMENT
The shell has an execution environment, which consists of the following:

®

open filesinherited by the shell at invocation, as modified by redirections supplied to the exec
builtin

the current working directory as set by cd, pushd, or popd, or inherited by the shell at invocation
the file creation mode mask as set by umask or inherited from the shell’s parent
current traps set by trap

shell parameters that are set by variable assignment or with set or inherited from the shell’ s parent
in the environment

shell functions defined during execution or inherited from the shell’ s parent in the environment
options enabled at invocation (either by default or with command-line arguments) or by set
options enabled by shopt

shell aliases defined with alias

various process | Ds, including those of background jobs, the value of $$, and the value of PPID

When a simple command other than a builtin or shell function isto be executed, it isinvoked in a
separate execution environment that consists of the following. Unless otherwise noted, the values are
inherited from the shell.

®

the shell’ s open files, plus any modifications and additions specified by redirectionsto the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

command
® the current working directory
® thefile creation mode mask

® shell variables and functions marked for export, along with variables exported for the command,
passed in the environment

®© traps caught by the shell are reset to the values inherited from the shell’ s parent, and traps ignored
by the shell are ignored

A command invoked in this separate environment cannot affect the shell’ s execution environment.
A subshell isa copy of the shell process.

Command substitution, commands grouped with parentheses, and asynchronous commands are
invoked in a subshell environment that is a duplicate of the shell environment, except that traps caught
by the shell are reset to the values that the shell inherited from its parent at invocation. Builtin
commands that are invoked as part of a pipeline are also executed in a subshell environment. Changes
made to the subshell environment cannot affect the shell’ s execution environment.

Subshells spawned to execute command substitutions inherit the value of the -e option from the parent
shell. When not in posix mode, bash clears the -e option in such subshells.

If acommand is followed by a& and job control is not active, the default standard input for the
command is the empty file/dev/null. Otherwise, the invoked command inherits the file descriptors of
the calling shell as modified by redirections.

ENVIRONMENT
When aprogram isinvoked it is given an array of strings called the environment. Thisisalist of
name-value pairs, of the form name=value.

The shell provides several ways to manipulate the environment. On invocation, the shell scansits own
environment and creates a parameter for each name found, automatically marking it for export to child
processes. Executed commands inherit the environment. The export and declar e -x commands allow
parameters and functions to be added to and deleted from the environment. |f the value of a parameter
in the environment is modified, the new value becomes part of the environment, replacing the old. The
environment inherited by any executed command consists of the shell’ sinitial environment, whose
values may be modified in the shell, less any pairs removed by the unset command, plus any additions

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

viathe export and declar e -x commands.

The environment for any simple command or function may be augmented temporarily by prefixing it
with parameter assignments, as described abovein PARAMETERS. These assignment statements
affect only the environment seen by that command.

If the -k option is set (see the set builtin command below), then all parameter assignments are placed in
the environment for a command, not just those that precede the command name.

When bash invokes an external command, the variable _is set to the full filename of the command and
passed to that command in its environment.

EXIT STATUS
The exit status of an executed command is the value returned by the waitpid system call or equivalent
function. Exit statuses fall between 0 and 255, though, as explained below, the shell may use values
above 125 specially. Exit statuses from shell builtins and compound commands are also limited to this
range. Under certain circumstances, the shell will use specia values to indicate specific failure modes.

For the shell’ s purposes, a command which exits with a zero exit status has succeeded. An exit status
of zero indicates success. A non-zero exit status indicates failure. When a command terminates on a
fatal signal N, bash usesthe value of 128+N as the exit status.

If acommand is not found, the child process created to execute it returns a status of 127. If acommand
isfound but is not executable, the return statusis 126.

If acommand fails because of an error during expansion or redirection, the exit statusis greater than
zero.

Shell builtin commands return a status of O (true) if successful, and non-zero (false) if an error occurs
while they execute. All builtins return an exit status of 2 to indicate incorrect usage, generally invalid
options or missing arguments.

The exit status of the last command is available in the special parameter $2.

Bash itsalf returns the exit status of the last command executed, unless a syntax error occurs, in which
case it exits with anon-zero value. See also the exit builtin command below.

SIGNALS

When bash isinteractive, in the absence of any traps, it ignores SIGTERM (so that kill O does not kill
an interactive shell), and SIGINT is caught and handled (so that the wait builtin isinterruptible). In all

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

cases, bash ignores SIGQUIT. If job control isin effect, bash ignores SIGTTIN, SIGTTOU, and
SIGTSTP.

Non-builtin commands run by bash have signal handlers set to the values inherited by the shell from its
parent. When job control is not in effect, asynchronous commandsignore SIGINT and SIGQUIT in
addition to these inherited handlers. Commands run as aresult of command substitution ignore the
keyboard-generated job control signas SIGTTIN, SIGTTOU, and SIGTSTP.

The shell exits by default upon receipt of a SIGHUP. Before exiting, an interactive shell resends the
SIGHUP to all jobs, running or stopped. Stopped jobs are sent SIGCONT to ensure that they receive
the SIGHUP. To prevent the shell from sending the signal to a particular job, it should be removed
from the jobs table with the disown builtin (see SHELL BUILTIN COMMANDS below) or marked to
not receive S| GHUP using disown -h.

If the huponexit shell option has been set with shopt, bash sends a SIGHUP to all jobs when an
interactive login shell exits.

If bash iswaiting for acommand to complete and receives asignal for which atrap has been set, the
trap will not be executed until the command completes. When bash iswaiting for an asynchronous
command viathe wait builtin, the reception of asignal for which atrap has been set will cause the wait
builtin to return immediately with an exit status greater than 128, immediately after which thetrapis
executed.

When job control is not enabled, and bash iswaiting for aforeground command to complete, the shell
receives keyboard-generated signals such as SIGINT (usually generated by ~ C) that users commonly
intend to send to that command. This happens because the shell and the command are in the same
process group as the terminal, and * C sends SIGINT to all processes in that process group.

When bash is running without job control enabled and receives SIGINT while waiting for aforeground
command, it waits until that foreground command terminates and then decides what to do about the
SIGINT:

1. If the command terminates due to the SIGINT, bash concludes that the user meant to end the entire
script, and acts on the SIGINT (e.g., by running a SIGINT trap or exiting itself);

2. If the command does not terminate due to SIGINT, the program handled the SIGINT itself and did
not treat it asafatal signal. In that case, bash does not treat SIGINT as afatal signal, either,
instead assuming that the SIGINT was used as part of the program’s normal operation (e.g., emacs
usesit to abort editing commands) or deliberately discarded. However, bash will run any trap set
on SIGINT, asit does with any other trapped signal it receives whileit iswaiting for the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

foreground command to compl ete, for compatibility.

JOB CONTROL
Job control refersto the ability to selectively stop (suspend) the execution of processes and continue
(resume) their execution at alater point. A user typically employsthisfacility via an interactive
interface supplied jointly by the operating system kernel’ s terminal driver and bash.

The shell associates ajob with each pipeline. It keeps atable of currently executing jobs, which may
be listed with the jobs command. When bash starts ajob asynchronously (in the background), it prints
alinethat looks like:

[1] 25647

indicating that thisjob is job number 1 and that the process ID of the last processin the pipeline
associated with thisjob is 25647. All of the processesin asingle pipeline are members of the same
job. Bash usesthejob abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the operating system maintains the
notion of acurrent terminal process group ID. Members of this process group (processes whose
process group 1D is equal to the current terminal process group 1D) receive keyboard-generated signals
such as SIGINT. These processes are said to bein the foreground. Background processes are those
whose process group ID differs from the terminal’s; such processes are immune to keyboard-generated
signals. Only foreground processes are allowed to read from or, if the user so specifies with stty tostop,
write to the terminal. Background processes which attempt to read from (write to when stty tostop isin
effect) theterminal aresent aSIGTTIN (SIGTTOU) signal by the kernel’ s terminal driver, which,
unless caught, suspends the process.

If the operating system on which bash is running supports job control, bash contains facilitiesto useit.
Typing the suspend character (typically ~Z, Control-Z) while a process is running causes that process
to be stopped and returns control to bash. Typing the delayed suspend character (typically 2Y, Control-
Y) causes the process to be stopped when it attempts to read input from the terminal, and control to be
returned to bash. The user may then manipulate the state of this job, using the bg command to continue
it in the background, the fg command to continue it in the foreground, or the kill command to kill it. A
NZ takes effect immediately, and has the additional side effect of causing pending output and typeahead
to be discarded.

There are anumber of waysto refer to ajob in the shell. The character % introduces a job specification
(jobspec). Job number n may be referred to as %n. A job may also be referred to using a prefix of the
name used to start it, or using a substring that appearsin its command line. For example, % ce refersto
a stopped job whose command name beginswith ce. If aprefix matches more than one job, bash

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

reports an error. Using % ?ce, on the other hand, refersto any job containing the string ce inits
command line. If the substring matches more than one job, bash reports an error. The symbols % %
and % + refer to the shell’ s notion of the current job, which isthe last job stopped while it wasin the
foreground or started in the background. The previous job may be referenced using %-. If thereisonly
asingle job, %+ and % - can both be used to refer to that job. In output pertaining to jobs (e.g., the
output of the jobs command), the current job is aways flagged with a+, and the previous job with a-.
A single % (with no accompanying job specification) also refersto the current job.

Simply naming ajob can be used to bring it into the foreground: % 1 isa synonym for ‘*‘fg%1'’,
bringing job 1 from the background into the foreground. Similarly, ‘%1 &’ resumesjob 1 inthe
background, equivalentto “‘bg % 1'".

The shell learns immediately whenever a job changes state. Normally, bash waits until it is about to
print a prompt before reporting changesin ajob’s status so asto not interrupt any other output. If the
-b option to the set builtin command is enabled, bash reports such changes immediately. Any trap on
SIGCHLD isexecuted for each child that exits.

If an attempt to exit bash is made while jobs are stopped (or, if the checkjobs shell option has been
enabled using the shopt builtin, running), the shell prints awarning message, and, if the checkjobs
option is enabled, lists the jobs and their statuses. The jobs command may then be used to inspect their
status. If a second attempt to exit is made without an intervening command, the shell does not print
another warning, and any stopped jobs are terminated.

When the shell iswaiting for ajob or process using the wait builtin, and job control is enabled, wait
will return when the job changes state. The -f option causes wait to wait until the job or process
terminates before returning.

PROMPTING
When executing interactively, bash displays the primary prompt PS1 when it isready to read a
command, and the secondary prompt PS2 when it needs more input to complete acommand. Bash
displays PSO after it reads a command but before executing it. Bash displays PS4 as described above
before tracing each command when the -x option is enabled. Bash allows these prompt strings to be
customized by inserting a number of backslash-escaped special characters that are decoded as follows:
\a an ASCII bell character (07)
\d thedatein"Weekday Month Date" format (e.g., "Tue May 26")
\D{format}
the format is passed to strftime(3) and the result is inserted into the prompt string; an empty
format results in alocale-specific time representation. The braces are required
\e an ASCII escape character (033)
\h the hostname up to thefirst *.’

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

\H the hostname

\j the number of jobs currently managed by the shell

\I the basename of the shell’ sterminal device nhame

\n newline

\r carriage return

\s the name of the shell, the basename of $0 (the portion following the final slash)

\t thecurrent timein 24-hour HH:MM:SS format

\T the current timein 12-hour HH:MM:SS format

\@ the current timein 12-hour am/pm format

\A the current time in 24-hour HH:MM format

\u the username of the current user

\v theversion of bash (e.g., 2.00)

\V therelease of bash, version + patch level (e.g., 2.00.0)

\w the value of the PWD shell variable ($PWD), with $HOM E abbreviated with atilde (uses the
value of the PROMPT_DIRTRIM variable)

\W the basename of $PWD, with $SHOM E abbreviated with atilde

\I' " the history number of this command

\# the command number of this command

\$ if the effective UID isO, a#, otherwise a$

\nnn
the character corresponding to the octal number nnn

\\ abackslash

\[begin asequence of non-printing characters, which could be used to embed aterminal control
sequence into the prompt

\] end asequence of non-printing characters

The command number and the history number are usually different: the history number of a command
isits position in the history list, which may include commands restored from the history file (see
HISTORY below), while the command number is the position in the sequence of commands executed
during the current shell session. After the string is decoded, it is expanded via parameter expansion,
command substitution, arithmetic expansion, and quote removal, subject to the value of the promptvars
shell option (see the description of the shopt command under SHELL BUILTIN COMMANDS below).
This can have unwanted side effects if escaped portions of the string appear within command

substitution or contain characters special to word expansion.

READLINE
Thisisthelibrary that handles reading input when using an interactive shell, unless the --noediting
option is given at shell invocation. Line editing is aso used when using the -e option to the read
builtin. By default, the line editing commands are similar to those of Emacs. A vi-style line editing
interface is also available. Line editing can be enabled at any time using the -0 emacs or -0 vi options

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

to the set builtin (see SHELL BUILTIN COMMANDS below). To turn off line editing after the shell
isrunning, use the +o0 emacs or +0 vi options to the set builtin.

Readline Notation
In this section, the Emacs-style notation is used to denote keystrokes. Control keys are denoted by
C-key, e.g., C-n means Control-N. Similarly, meta keys are denoted by M-key, so M-x means Meta-X.
(On keyboards without a meta key, M-x means ESC X, i.e., press the Escape key then the x key. This
makes ESC the meta prefix. The combination M-C-x means ESC-Control-X, or press the Escape key
then hold the Control key while pressing the x key.)

Readline commands may be given numeric arguments, which normally act as arepeat count.
Sometimes, however, it isthe sign of the argument that is significant. Passing a negative argument to a
command that actsin the forward direction (e.g., kill-line) causes that command to act in a backward
direction. Commands whose behavior with arguments deviates from this are noted below.

When a command is described as killing text, the text deleted is saved for possible future retrieval
(yanking). Thekilled text issaved in akill ring. Consecutive kills cause the text to be accumulated
into one unit, which can be yanked all at once. Commands which do not kill text separate the chunks
of text on thekill ring.

Readline I nitialization
Readline is customized by putting commands in an initialization file (the inputrc file). The name of
thisfile istaken from the value of the INPUTRC variable. If that variableis unset, the default is
~[.inputrc. If that file does not exist or cannot be read, the ultimate default is /usr/local/etc/inputrc.
When a program which uses the readline library starts up, the initialization file is read, and the key
bindings and variables are set. There are only afew basic constructs allowed in the readline
initialization file. Blank linesareignored. Lines beginning with a# are comments. Lines beginning
with a$ indicate conditional constructs. Other lines denote key bindings and variable settings.

The default key-bindings may be changed with an inputrc file. Other programs that use this library
may add their own commands and bindings.

For example, placing

M-Control-u: universal-argument
or

C-Meta-u: universal-argument

into the inputrc would make M-C-u execute the readline command univer sal-argument.

The following symbolic character names are recognized: RUBOUT, DEL, ESC, LFD, NEWLINE,

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

RET, RETURN, SPC, SPACE, and TAB.

In addition to command names, readline allows keys to be bound to a string that is inserted when the
key is pressed (a macro).

Readline Key Bindings
The syntax for controlling key bindingsin the inputrc fileissimple. All that isrequired is the name of
the command or the text of a macro and a key sequence to which it should be bound. The name may be
specified in one of two ways. as a symbolic key name, possibly with Meta- or Control- prefixes, or asa

key sequence.

When using the form keyname:function-name or macro, keyname is the name of akey spelled out in
English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output"

In the above example, C-u is bound to the function univer sal-argument, M-DEL is bound to the
function backwar d-kill-word, and C-o is bound to run the macro expressed on the right hand side (that
is, toinsert thetext **> output’’ into the line).

In the second form, " keyseq" :function-name or macro, keyseq differs from keyname above in that
strings denoting an entire key sequence may be specified by placing the sequence within double quotes.
Some GNU Emacs style key escapes can be used, as in the following example, but the symbolic
character names are not recogni zed.

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\g[11~": "Function Key 1"

In this example, C-u is again bound to the function univer sal-argument. C-x C-r is bound to the
function re-read-init-file, and ESC [1 1 ~ isbound to insert the text ‘* Function Key 1'".

The full set of GNU Emacs style escape sequencesis
\C- control prefix
\M - meta prefix
\e an escape character
\\ backdash
\" literal "

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

\' literal’

In addition to the GNU Emacs style escape sequences, a second set of backslash escapesis available:
\a adert (bell)
\b backspace
\d delete
\f form feed
\n newline
\r carriage return
\t horizonta tab
\v vertical tab
\nnn
the eight-bit character whose value is the octal value nnn (one to three digits)
\xHH
the eight-bit character whose value is the hexadecimal value HH (one or two hex digits)

When entering the text of amacro, single or double quotes must be used to indicate a macro definition.
Unquoted text is assumed to be afunction name. In the macro body, the backslash escapes described
above are expanded. Backslash will quote any other character in the macro text, including " and .

Bash alows the current readline key bindings to be displayed or modified with the bind builtin
command. The editing mode may be switched during interactive use by using the -0 option to the set
builtin command (see SHELL BUILTIN COMMANDS below).

Readline Variables
Readline has variables that can be used to further customize its behavior. A variable may be set in the
inputrc file with a statement of the form

set variable-name value
or using the bind builtin command (see SHELL BUILTIN COMMANDS below).

Except where noted, readline variables can take the values On or Off (without regard to case).
Unrecognized variable names areignored. When avariable value is read, empty or null values, "on"
(case-insensitive), and "1" are equivalent to On. All other values are equivaent to Off. The variables
and their default values are:

active-region-start-color
A string variable that controls the text color and background when displaying the text in the active
region (see the description of enable-active-region below). This string must not take up any
physical character positions on the display, so it should consist only of terminal escape sequences.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

It is output to the terminal before displaying the text in the active region. Thisvariableisreset to
the default value whenever the terminal type changes. The default value is the string that puts the
terminal in standout mode, as obtained from the terminal’s terminfo description. A sample value
might be "\e[01;33m".

active-r egion-end-color
A string variable that "undoes" the effects of active-region-start-color and restores "normal”
terminal display appearance after displaying text in the active region. This string must not take up
any physical character positions on the display, so it should consist only of terminal escape
sequences. It isoutput to the terminal after displaying the text in the active region. Thisvariable
is reset to the default value whenever the terminal type changes. The default value isthe string
that restores the terminal from standout mode, as obtained from the terminal’ s terminfo
description. A sample value might be "\efOm".

bell-style (audible)
Controls what happens when readline wants to ring the terminal bell. If set to none, readline never
ringsthe bell. If set to visible, readline uses avisible bell if oneisavailable. If set to audible,
readline attempts to ring the terminal’ s bell.

bind-tty-special-chars (On)
If set to On, readline attempts to bind the control characters treated specially by the kernel’s
terminal driver to their readline equivalents.

blink-matching-paren (Off)
If set to On, readline attempts to briefly move the cursor to an opening parenthesis when a closing
parenthesisisinserted.

color ed-completion-prefix (Off)
If set to On, when listing completions, readline displays the common prefix of the set of possible
completions using a different color. The color definitions are taken from the value of the
LS COLORS environment variable. If thereisacolor definitionin $LS COL ORS for the custom
suffix "readline-colored-completion-prefix", readline uses this color for the common prefix instead
of its default.

colored-stats (Off)
If set to On, readline displays possible completions using different colorsto indicate their file type.
The color definitions are taken from the value of the LS _COL ORS environment variable.

comment-begin (‘“‘#")
The string that is inserted when the readline insert-comment command is executed. This command
is bound to M-# in emacs mode and to # in vi command mode.

completion-display-width (-1)
The number of screen columns used to display possible matches when performing completion.
Thevaueisignored if it islessthan O or greater than the terminal screen width. A value of 0 will
cause matches to be displayed one per line. The default valueis-1.

completion-ignor e-case (Off)
If set to On, readline performs filename matching and completion in a case-insensitive fashion.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

completion-map-case (Off)
If set to On, and completion-ignor e-case is enabled, readline treats hyphens (-) and underscores ()
as equivalent when performing case-insensitive filename matching and compl etion.

completion-prefix-display-length (0)
The length in characters of the common prefix of alist of possible completionsthat is displayed
without modification. When set to avalue greater than zero, common prefixes longer than this
value are replaced with an ellipsis when displaying possible completions.

completion-query-items (100)
This determines when the user is queried about viewing the number of possible completions
generated by the possible-completions command. It may be set to any integer value greater than or
equal to zero. If the number of possible completionsis greater than or equal to the value of this
variable, readline will ask whether or not the user wishesto view them; otherwise they are smply
listed on the terminal. A zero value means readline should never ask; negative values are treated
as zero.

convert-meta (On)
If set to On, readline will convert characters with the eighth bit set to an ASCII key sequence by
stripping the eighth bit and prefixing an escape character (in effect, using escape as the meta
prefix). The default is On, but readline will set it to Off if the locale contains eight-bit characters.
Thisvariableis dependent on the LC_CTY PE locale category, and may change if thelocaeis
changed.

disable-completion (Off)
If set to On, readline will inhibit word completion. Completion characters will be inserted into the
line asif they had been mapped to self-insert.

echo-control-characters (On)
When set to On, on operating systems that indicate they support it, readline echoes a character
corresponding to asignal generated from the keyboard.

editing-mode (emacs)
Controls whether readline begins with a set of key bindings similar to Emacs or vi. editing-mode
can be set to either emacs or vi.

emacs-mode-string (@)
If the show-maode-in-prompt variable is enabled, this string is displayed immediately before the last
line of the primary prompt when emacs editing mode is active. The value is expanded like a key
binding, so the standard set of meta- and control prefixes and backslash escape sequencesis
available. Usethe\1 and \2 escapes to begin and end sequences of non-printing characters, which
can be used to embed aterminal control sequence into the mode string.

enable-active-region (On)
The point is the current cursor position, and mark refers to a saved cursor position. The text
between the point and mark isreferred to as the region. When thisvariableis set to On, readline
allows certain commands to designate the region as active. When the region is active, readline
highlights the text in the region using the value of the active-region-start-color, which defaults to

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

the string that enables the terminal’ s standout mode. The active region shows the text inserted by
bracketed-paste and any matching text found by incremental and non-incremental history searches.

enable-bracketed-paste (On)
When set to On, readline configures the terminal to insert each paste into the editing buffer asa
single string of characters, instead of treating each character asif it had been read from the
keyboard. This prevents readline from executing any editing commands bound to key sequences
appearing in the pasted text.

enable-keypad (Off)
When set to On, readline will try to enable the application keypad when it iscalled. Some systems
need this to enable the arrow keys.

enable-meta-key (On)
When set to On, readline will try to enable any meta modifier key the terminal claimsto support
whenitiscalled. On many terminals, the metakey is used to send eight-bit characters.

expand-tilde (Off)
If set to On, tilde expansion is performed when readline attempts word completion.

history-preserve-point (Off)
If set to On, the history code attempts to place point at the same location on each history line
retrieved with previous-history or next-history.

history-size (unset)
Set the maximum number of history entries saved in the history list. If set to zero, any existing
history entries are deleted and no new entries are saved. If set to avalue less than zero, the number
of history entriesisnot limited. By default, the number of history entriesis set to the value of the
HISTSIZE shell variable. If an attempt is made to set history-size to a non-numeric value, the
maximum number of history entries will be set to 500.

horizontal-scr oll-mode (Off)
When set to On, makes readline use asingle line for display, scrolling the input horizontally on a
single screen line when it becomes longer than the screen width rather than wrapping to anew line.
This setting is automatically enabled for terminals of height 1.

input-meta (Off)
If set to On, readline will enable eight-bit input (that is, it will not strip the eighth bit from the
charactersit reads), regardless of what the terminal claimsit can support. The name meta-flagisa
synonym for thisvariable. The default is Off, but readline will set it to On if the locale contains
eight-bit characters. Thisvariableis dependent onthe LC_CTYPE locale category, and may
change if the locale is changed.

isear ch-terminators (‘*‘C-[C-J")
The string of characters that should terminate an incremental search without subsequently
executing the character as a command. If this variable has not been given avalue, the characters
ESC and C-J will terminate an incremental search.

keymap (emacs)
Set the current readline keymap. The set of valid keymap names is emacs, emacs-standard,

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

emacs-meta, emacs-ctlx, vi, vi-command, and vi-insert. vi is equivalent to vi-command; emacsis
equivalent to emacs-standard. The default value is emacs; the value of editing-mode also affects
the default keymap.

keyseq-timeout (500)
Specifies the duration readline will wait for a character when reading an ambiguous key sequence
(one that can form a compl ete key sequence using the input read so far, or can take additional input
to complete alonger key sequence). If no input is received within the timeout, readline will use
the shorter but complete key sequence. The valueis specified in milliseconds, so a value of 1000
means that readline will wait one second for additional input. If thisvariableis set to avaue less
than or equal to zero, or to a non-numeric value, readline will wait until another key is pressed to
decide which key sequence to complete.

mark-directories (On)
If set to On, completed directory names have a slash appended.

mar k-modified-lines (Off)
If set to On, history lines that have been modified are displayed with a preceding asterisk (*).

mar k-symlinked-dir ectories (Off)
If set to On, completed names which are symboalic links to directories have a slash appended
(subject to the value of mark-directories).

match-hidden-files (On)
This variable, when set to On, causes readline to match files whose names begin witha“.” (hidden
files) when performing filename completion. If set to Off, theleading ‘." must be supplied by the
user in the filename to be completed.

menu-complete-display-pr efix (Off)
If set to On, menu completion displays the common prefix of the list of possible completions
(which may be empty) before cycling through the list.

output-meta (Off)
If set to On, readline will display characters with the eighth bit set directly rather than as a meta-
prefixed escape sequence. The default is Off, but readline will set it to On if the locale contains
eight-bit characters. Thisvariable is dependent onthe LC_CTY PE locale category, and may
changeif the locale is changed.

page-completions (On)
If set to On, readline uses an internal more-like pager to display a screenful of possible
completions at atime.

print-completions-horizontally (Off)
If set to On, readline will display completions with matches sorted horizontally in alphabetical
order, rather than down the screen.

revert-all-at-newline (Off)
If set to On, readline will undo all changes to history lines before returning when accept-lineis
executed. By default, history lines may be modified and retain individual undo lists across callsto
readline.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

show-all-if-ambiguous (Off)
This alters the default behavior of the completion functions. If set to On, words which have more
than one possible completion cause the matches to be listed immediately instead of ringing the
bell.
show-all-if-unmodified (Off)
This alters the default behavior of the completion functionsin afashion similar to
show-all-if-ambiguous. If set to On, words which have more than one possible completion without
any possible partial completion (the possible completions don’t share a common prefix) cause the
matches to be listed immediately instead of ringing the bell.
show-mode-in-prompt (Off)
If set to On, add a string to the beginning of the prompt indicating the editing mode: emacs, vi
command, or vi insertion. The mode strings are user-settable (e.g., emacs-mode-string).
skip-completed-text (Off)
If set to On, this aters the default completion behavior when inserting a single match into the line.
It's only active when performing completion in the middle of aword. If enabled, readline does not
insert characters from the completion that match characters after point in the word being
completed, so portions of the word following the cursor are not duplicated.
vi-cmd-maode-string ((cmd))
If the show-mode-in-prompt variable is enabled, this string is displayed immediately before the last
line of the primary prompt when vi editing mode is active and in command mode. The valueis
expanded like a key binding, so the standard set of meta- and control prefixes and backslash escape
sequencesis available. Usethe\1 and \2 escapes to begin and end sequences of non-printing
characters, which can be used to embed a terminal control sequence into the mode string.
vi-inssmode-string ((ins))
If the show-mode-in-prompt variable is enabled, this string is displayed immediately before the last
line of the primary prompt when vi editing mode is active and in insertion mode. Thevaueis
expanded like a key binding, so the standard set of meta- and control prefixes and backslash escape
sequencesisavailable. Usethe\1 and \2 escapes to begin and end sequences of non-printing
characters, which can be used to embed aterminal control sequence into the mode string.
visible-stats (Off)
If set to On, a character denoting afile' stype as reported by stat(2) is appended to the filename
when listing possible completions.

Readline Conditional Constructs
Readline implements afacility similar in spirit to the conditional compilation features of the C
preprocessor which allows key bindings and variable settings to be performed as the result of tests.
There are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the terminal being used,
or the application using readline. The text of the test, after any comparison operator,

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

extends to the end of the line; unless otherwise noted, no characters are required to isolate it.

mode
The mode= form of the $if directive is used to test whether readline isin emacs or vi mode.
This may be used in conjunction with the set keymap command, for instance, to set bindings
in the emacs-standard and emacs-ctlx keymaps only if readline is starting out in emacs mode.

term
Theterm= form may be used to include terminal-specific key bindings, perhapsto bind the
key sequences output by the terminal’ s function keys. The word on theright side of the=is
tested against both the full name of the terminal and the portion of the terminal name before
thefirst -. Thisallows sun to match both sun and sun-cmd, for instance.

version
The version test may be used to perform comparisons against specific readline versions. The
version expands to the current readline version. The set of comparison operators includes =,
(and ==), =, <=, >=, <, and >. The version humber supplied on the right side of the operator
consists of amajor version number, an optional decimal point, and an optional minor version
(eg., 7.1). If the minor version is omitted, it is assumed to be 0. The operator may be
separated from the string ver sion and from the version number argument by whitespace.

application
The application construct is used to include application-specific settings. Each program using
thereadline library sets the application name, and an initialization file can test for a particular
value. Thiscould be used to bind key sequences to functions useful for a specific program.
For instance, the following command adds a key sequence that quotes the current or previous
word in bash:

$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""

$endif

variable
The variable construct provides simple equality tests for readline variables and values. The
permitted comparison operators are =, ==, and !=. The variable name must be separated from

the comparison operator by whitespace; the operator may be separated from the value on the
right hand side by whitespace. Both string and boolean variables may be tested. Boolean
variables must be tested against the values on and off.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

$endif
This command, as seen in the previous example, terminates an $if command.

$else
Commands in this branch of the $if directive are executed if the test fails.

$include
This directive takes a single filename as an argument and reads commands and bindings from that
file. For example, the following directive would read /usr/local/etc/inputrc:

$include /usr/local/etc/inputrc

Sear ching
Readline provides commands for searching through the command history (see HISTORY below) for
lines containing a specified string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each character of
the search string is typed, readline displays the next entry from the history matching the string typed so
far. Anincremental search requiresonly as many characters as needed to find the desired history entry.
The characters present in the value of the isear ch-terminator s variable are used to terminate an
incremental search. If that variable has not been assigned a value the Escape and Control-J characters
will terminate an incremental search. Control-G will abort an incremental search and restore the
original line. When the search is terminated, the history entry containing the search string becomes the
current line.

To find other matching entries in the history list, type Control-S or Control-R as appropriate. Thiswill
search backward or forward in the history for the next entry matching the search string typed so far.
Any other key sequence bound to areadline command will terminate the search and execute that
command. For instance, a newline will terminate the search and accept the line, thereby executing the
command from the history list.

Readline remembers the last incremental search string. If two Control-Rs are typed without any
intervening characters defining a new search string, any remembered search string is used.

Non-incremental searches read the entire search string before starting to search for matching history
lines. The search string may be typed by the user or be part of the contents of the current line.

Readline Command Names

Thefollowing isalist of the names of the commands and the default key sequences to which they are
bound. Command names without an accompanying key sequence are unbound by default. 1nthe

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

following descriptions, point refersto the current cursor position, and mark refers to a cursor position
saved by the set-mark command. The text between the point and mark is referred to as the region.

Commandsfor Moving

beginning-of-line (C-a)
Moveto the start of the current line.

end-of-line (C-€)
Move to the end of theline.

forward-char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

forward-word (M-f)
Move forward to the end of the next word. Words are composed of alphanumeric characters
(letters and digits).

backward-word (M-b)
Move back to the start of the current or previous word. Words are composed of aphanumeric
characters (letters and digits).

shell-forwar d-wor d
Move forward to the end of the next word. Words are delimited by non-quoted shell
metacharacters.

shell-backwar d-word
Move back to the start of the current or previous word. Words are delimited by non-quoted shell
metacharacters.

previous-screen-line
Attempt to move point to the same physical screen column on the previous physical screen line.
Thiswill not have the desired effect if the current readline line does not take up more than one
physical line or if point is not greater than the length of the prompt plus the screen width.

next-screen-line
Attempt to move point to the same physical screen column on the next physical screen line. This
will not have the desired effect if the current readline line does not take up more than one physical
line or if the length of the current readline line is not greater than the length of the prompt plus the
screen width.

clear-display (M-C-l)
Clear the screen and, if possible, the terminal’s scrollback buffer, then redraw the current line,
leaving the current line at the top of the screen.

clear-screen (C-I)
Clear the screen, then redraw the current line, leaving the current line at the top of the screen.
With an argument, refresh the current line without clearing the screen.

redraw-current-line

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Refresh the current line.

Commandsfor Manipulating the History

accept-line (Newline, Return)
Accept the line regardliess of where the cursor is. If thislineis non-empty, add it to the history list
according to the state of the HISTCONTROL variable. If thelineisamodified history line, then
restore the history line to its original state.

previous-history (C-p)
Fetch the previous command from the history list, moving back in the list.

next-history (C-n)
Fetch the next command from the history list, moving forward in the list.

beginning-of-history (M-<)
Moveto thefirst line in the history.

end-of-history (M->)
Moveto the end of the input history, i.e., the line currently being entered.

oper ate-and-get-next (C-0)
Accept the current line for execution and fetch the next line relative to the current line from the
history for editing. A numeric argument, if supplied, specifies the history entry to use instead of
the current line.

fetch-history
With a numeric argument, fetch that entry from the history list and make it the current line.
Without an argument, move back to the first entry in the history list.

rever se-sear ch-history (C-r)
Search backward starting at the current line and moving ‘up’ through the history as necessary.
Thisisan incremental search.

forwar d-sear ch-history (C-s)
Search forward starting at the current line and moving ‘down’ through the history as necessary.
Thisis an incremental search.

non-incr emental-rever se-sear ch-history (M-p)
Search backward through the history starting at the current line using a non-incremental search for
astring supplied by the user.

non-incr emental-forwar d-sear ch-history (M-n)
Search forward through the history using a non-incremental search for a string supplied by the
user.

history-sear ch-forward
Search forward through the history for the string of characters between the start of the current line
and the point. Thisisanon-incremental search.

history-sear ch-backward
Search backward through the history for the string of characters between the start of the current
line and the point. Thisisanon-incremental search.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

history-substring-sear ch-backward
Search backward through the history for the string of characters between the start of the current
line and the current cursor position (the point). The search string may match anywhere in a history
line. Thisisanon-incremental search.

history-substring-sear ch-forward
Search forward through the history for the string of characters between the start of the current line
and the point. The search string may match anywherein ahistory line. Thisisanon-incremental
search.

yank-nth-arg (M-C-y)
Insert the first argument to the previous command (usually the second word on the previous line) at
point. With an argument n, insert the nth word from the previous command (the wordsin the
previous command begin with word 0). A negative argument inserts the nth word from the end of
the previous command. Once the argument n is computed, the argument is extracted asif the "!n"
history expansion had been specified.

yank-last-arg (M-., M-_)
Insert the last argument to the previous command (the last word of the previous history entry).
With a numeric argument, behave exactly like yank-nth-arg. Successive callsto yank-last-arg
move back through the history list, inserting the last word (or the word specified by the argument
to thefirst call) of each linein turn. Any numeric argument supplied to these successive calls
determines the direction to move through the history. A negative argument switches the direction
through the history (back or forward). The history expansion facilities are used to extract the last
word, asif the"!$" history expansion had been specified.

shell-expand-line (M-C-€)
Expand the line as the shell does. This performs alias and history expansion aswell asall of the
shell word expansions. See HISTORY EXPANSION below for a description of history expansion.

history-expand-line (M-")
Perform history expansion on the current line. See HISTORY EXPANSION below for a
description of history expansion.

magic-space
Perform history expansion on the current line and insert aspace. See HISTORY EXPANSION
below for a description of history expansion.

alias-expand-line
Perform alias expansion on the current line. See ALIASES above for a description of aias
expansion.

history-and-alias-expand-line
Perform history and alias expansion on the current line.

insert-last-argument (M-., M-)
A synonym for yank-last-arg.

edit-and-execute-command (C-x C-€)
Invoke an editor on the current command line, and execute the result as shell commands. Bash

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

attempts to invoke $VISUAL, $EDITOR, and emacs as the editor, in that order.

Commandsfor Changing Text

end-of-file (usually C-d)
The character indicating end-of-file as set, for example, by *‘stty’’. If this character is read when
there are no characters on the line, and point is at the beginning of the line, readline interpretsit as
the end of input and returns EOF-.

delete-char (C-d)
Delete the character at point. |If thisfunction isbound to the same character as the tty EOF
character, as C-d commonly is, see above for the effects.

backward-delete-char (Rubout)
Delete the character behind the cursor. When given a numeric argument, save the deleted text on
the kill ring.

forwar d-backwar d-delete-char
Delete the character under the cursor, unless the cursor is at the end of the line, in which case the
character behind the cursor is deleted.

guoted-insert (C-q, C-v)
Add the next character typed to the line verbatim. Thisis how to insert characters like C-q, for
example.

tab-insert (C-v TAB)
Insert atab character.

sef-insert (a, b, A, 1,1, ...)
Insert the character typed.

transpose-chars (C-t)
Drag the character before point forward over the character at point, moving point forward as well.
If point is at the end of the line, then this transposes the two characters before point. Negative
arguments have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point over that word aswell. If point
is at the end of the line, this transposes the last two words on the line.

upcase-word (M-u)
Uppercase the current (or following) word. With a negative argument, uppercase the previous
word, but do not move point.

downcase-word (M-I)
Lowercase the current (or following) word. With a negative argument, lowercase the previous
word, but do not move point.

capitalize-word (M-c)
Capitalize the current (or following) word. With a negative argument, capitalize the previous
word, but do not move point.

overwrite-mode

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Toggle overwrite mode. With an explicit positive numeric argument, switches to overwrite mode.
With an explicit non-positive numeric argument, switchesto insert mode. This command affects
only emacs mode; vi mode does overwrite differently. Each call to readling() startsin insert mode.
In overwrite mode, characters bound to self-insert replace the text at point rather than pushing the
text to the right. Characters bound to backwar d-delete-char replace the character before point with
aspace. By default, this command is unbound.

Killing and Yanking
Kill-line (C-k)
Kill the text from point to the end of the line.
backward-kill-line (C-x Rubout)
Kill backward to the beginning of the line.
unix-line-discard (C-u)
Kill backward from point to the beginning of theline. The killed text is saved on the kill-ring.
kill-whole-line
Kill al characters on the current line, no matter where point is.
Kill-word (M-d)
Kill from point to the end of the current word, or if between words, to the end of the next word.
Word boundaries are the same as those used by forwar d-word.
backwar d-kill-word (M-Rubout)
Kill the word behind point. Word boundaries are the same as those used by backwar d-word.
shell-kill-word
Kill from point to the end of the current word, or if between words, to the end of the next word.
Word boundaries are the same as those used by shell-forwar d-wor d.
shell-backward-kill-word
Kill the word behind point. Word boundaries are the same as those used by shell-backward-word.
unix-wor d-rubout (C-w)
Kill the word behind point, using white space as aword boundary. The killed text is saved on the
kill-ring.
unix-filename-rubout
Kill the word behind point, using white space and the slash character as the word boundaries. The
killed text is saved on the kill-ring.
delete-horizontal-space (M-\)
Delete all spaces and tabs around point.
Kill-region
Kill the text in the current region.
copy-region-as-kill
Copy thetext in the region to the kill buffer.
copy-backwar d-word
Copy the word before point to the kill buffer. The word boundaries are the same as

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

backward-word.
copy-forward-wor d
Copy the word following point to the kill buffer. The word boundaries are the same as
forward-word.
yank (C-y)
Y ank the top of the kill ring into the buffer at point.
yank-pop (M-y)
Rotate the kill ring, and yank the new top. Only works following yank or yank-pop.

Numeric Arguments

digit-argument (M-0, M-1, ..., M--)
Add this digit to the argument already accumulating, or start a new argument. M-- startsa
negative argument.

univer sal-argument
Thisis another way to specify an argument. If this command is followed by one or more digits,
optionally with aleading minus sign, those digits define the argument. |f the command is followed
by digits, executing univer sal-ar gument again ends the numeric argument, but is otherwise
ignored. Asaspecial case, if thiscommand isimmediately followed by a character that is neither
adigit nor minus sign, the argument count for the next command is multiplied by four. The
argument count isinitially one, so executing this function the first time makes the argument count
four, a second time makes the argument count sixteen, and so on.

Completing

complete (TAB)
Attempt to perform completion on the text before point. Bash attempts completion treating the text
asavariable (if the text begins with $), username (if the text begins with ~), hostname (if the text
begins with @), or command (including aliases and functions) in turn. |f none of these produces a
match, filename completion is attempted.

possible-completions (M-?)
List the possible completions of the text before point.

insert-completions (M-*)
Insert all completions of the text before point that would have been generated by
possible-completions.

menu-complete
Similar to complete, but replaces the word to be completed with a single match from the list of
possible completions. Repeated execution of menu-complete steps through the list of possible
completions, inserting each match in turn. At the end of the list of completions, the bell isrung
(subject to the setting of bell-style) and the original text isrestored. An argument of n moves n
positions forward in the list of matches; a negative argument may be used to move backward
through the list. This command isintended to be bound to TAB, but is unbound by default.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

menu-complete-backward
Identical to menu-complete, but moves backward through the list of possible completions, as if
menu-complete had been given a negative argument. This command is unbound by default.
delete-char-or-list
Deletes the character under the cursor if not at the beginning or end of the line (like delete-char).
If at the end of the line, behavesidentically to possible-completions. This command is unbound by
default.
complete-filename (M-/)
Attempt filename completion on the text before point.
possible-filename-completions (C-x /)
List the possible completions of the text before point, treating it as a filename.
complete-username (M -~)
Attempt completion on the text before point, treating it as a username.
possible-user name-completions (C-x ~)
List the possible completions of the text before point, treating it as a username.
complete-variable (M-$)
Attempt completion on the text before point, treating it as a shell variable.
possible-variable-completions (C-x $)
List the possible completions of the text before point, treating it as a shell variable.
complete-hostname (M-@)
Attempt completion on the text before point, treating it as a hostname.
possible-hostname-completions (C-x @)
List the possible completions of the text before point, treating it as a hostname.
complete-command (M-!)
Attempt completion on the text before point, treating it as a command name. Command
completion attempts to match the text against aliases, reserved words, shell functions, shell
builtins, and finally executable filenames, in that order.
possible-command-completions (C-x !)
List the possible completions of the text before point, treating it as a command name.
dynamic-complete-history (M-TAB)
Attempt completion on the text before point, comparing the text against lines from the history list
for possible completion matches.
dabbrev-expand
Attempt menu completion on the text before point, comparing the text against lines from the
history list for possible completion matches.
complete-into-braces (M-{)
Perform filename completion and insert the list of possible completions enclosed within braces so
the list is available to the shell (see Brace Expansion above).

Keyboard Macros

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

start-kbd-macro (C-x ()
Begin saving the characters typed into the current keyboard macro.
end-kbd-macro (C-x))
Stop saving the characters typed into the current keyboard macro and store the definition.
call-last-kbd-macro (C-x €)
Re-execute the last keyboard macro defined, by making the characters in the macro appear asif
typed at the keyboard.
print-last-kbd-macro ()
Print the last keyboard macro defined in aformat suitable for the inputrc file.

Miscellaneous
re-read-init-file (C-x C-r)
Read in the contents of the inputrc file, and incorporate any bindings or variable assignments found
there.
abort (C-g)
Abort the current editing command and ring the terminal’ s bell (subject to the setting of bell-style).
do-lowercase-version (M-A, M-B, M-x, ...)
If the metafied character x is uppercase, run the command that is bound to the corresponding
metafied lowercase character. The behavior is undefined if x is already lowercase.
prefix-meta (ESC)
Metafy the next character typed. ESC f isequivalent to Meta-f.
undo (C-_, C-x C-u)
Incremental undo, separately remembered for each line.
revert-line (M-r)
Undo all changes madeto thisline. Thisislike executing the undo command enough times to
return the lineto itsinitial state.
tilde-expand (M-&)
Perform tilde expansion on the current word.
set-mark (C-@, M-<space>)
Set the mark to the point. If a numeric argument is supplied, the mark is set to that position.
exchange-point-and-mark (C-x C-x)
Swap the point with the mark. The current cursor position is set to the saved position, and the old
cursor position is saved as the mark.
character-search (C-])
A character is read and point is moved to the next occurrence of that character. A negative
argument searches for previous occurrences.
char acter-sear ch-backward (M-C-])
A character is read and point is moved to the previous occurrence of that character. A negative
argument searches for subsequent occurrences.
skip-csi-sequence

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Read enough characters to consume a multi-key sequence such as those defined for keys like
Home and End. Such sequences begin with a Control Sequence Indicator (CSl), usualy ESC-[. If
this sequence is bound to "\[", keys producing such sequences will have no effect unless explicitly
bound to a readline command, instead of inserting stray charactersinto the editing buffer. Thisis
unbound by default, but usually bound to ESC-[.

insert-comment (M-#)
Without a numeric argument, the value of the readline comment-begin variable isinserted at the
beginning of the current line. If anumeric argument is supplied, this command acts as atoggle: if
the characters at the beginning of the line do not match the value of comment-begin, thevalueis
inserted, otherwise the characters in comment-begin are deleted from the beginning of theline. In
either case, the lineis accepted as if a newline had been typed. The default value of
comment-begin causes this command to make the current line a shell comment. If anumeric
argument causes the comment character to be removed, the line will be executed by the shell.

spell-correct-word (C-x 9)
Perform spelling correction on the current word, treating it as a directory or filename, in the same
way as the cdspell shell option. Word boundaries are the same as those used by
shell-forward-word.

glob-complete-word (M-g)
The word before point is treated as a pattern for pathname expansion, with an asterisk implicitly
appended. This pattern is used to generate alist of matching filenames for possible completions.

glob-expand-word (C-x *)
The word before point is treated as a pattern for pathname expansion, and the list of matching
filenames isinserted, replacing the word. If anumeric argument is supplied, an asterisk is
appended before pathname expansion.

glob-list-expansions (C-x Q)
Thelist of expansions that would have been generated by glob-expand-word is displayed, and the
lineisredrawn. If anumeric argument is supplied, an asterisk is appended before pathname
expansion.

dump-functions
Print al of the functions and their key bindings to the readline output stream. If anumeric
argument is supplied, the output is formatted in such away that it can be made part of an inputrc
file.

dump-variables
Print all of the settable readline variables and their values to the readline output stream. If a
numeric argument is supplied, the output is formatted in such away that it can be made part of an
inputrc file.

dump-macros
Print al of the readline key sequences bound to macros and the strings they output. If a numeric
argument is supplied, the output is formatted in such away that it can be made part of an inputrc
file.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

display-shell-version (C-x C-v)
Display version information about the current instance of bash.

Programmable Completion
When word completion is attempted for an argument to a command for which a completion
specification (a compspec) has been defined using the complete builtin (see SHELL BUILTIN
COMMANDS below), the programmable completion facilities are invoked.

First, the command name isidentified. If the command word is the empty string (completion attempted
at the beginning of an empty line), any compspec defined with the -E option to completeisused. If a
compspec has been defined for that command, the compspec is used to generate the list of possible
completions for the word. If the command word is afull pathname, a compspec for the full pathname
is searched for first. If no compspec isfound for the full pathname, an attempt is madeto find a
compspec for the portion following the final dlash. If those searches do not result in a compspec, any
compspec defined with the -D option to completeis used as the default. If thereis no default
compspec, bash attempts alias expansion on the command word as afinal resort, and attemptsto find a
compspec for the command word from any successful expansion.

Once a compspec has been found, it is used to generate the list of matching words. |If acompspecis
not found, the default bash completion as described above under Completing is performed.

First, the actions specified by the compspec are used. Only matches which are prefixed by the word
being completed are returned. When the -f or -d option is used for filename or directory name
completion, the shell variable FIGNORE is used to filter the matches.

Any completions specified by a pathname expansion pattern to the -G option are generated next. The
words generated by the pattern need not match the word being completed. The GLOBIGNORE shell
variable is not used to filter the matches, but the FIGNORE variableis used.

Next, the string specified as the argument to the -W option is considered. The string isfirst split using
the charactersin the | FS specia variable as delimiters. Shell quoting is honored. Each word isthen
expanded using brace expansion, tilde expansion, parameter and variable expansion, command
substitution, and arithmetic expansion, as described above under EXPANSION. Theresults are split
using the rules described above under Word Splitting. The results of the expansion are prefix-matched
against the word being completed, and the matching words become the possible completions.

After these matches have been generated, any shell function or command specified with the -F and -C
optionsisinvoked. When the command or function isinvoked, the COMP_LINE, COMP_POINT,
COMP_KEY, and COMP_TY PE variables are assigned values as described above under Shell
Variables. If ashell function isbeing invoked, the COMP_WORDS and COMP_CWORD variables

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

are also set. When the function or command isinvoked, the first argument ($1) is the name of the
command whose arguments are being completed, the second argument ($2) is the word being
completed, and the third argument ($3) is the word preceding the word being completed on the current
command line. No filtering of the generated completions against the word being completed is
performed; the function or command has complete freedom in generating the matches.

Any function specified with -F isinvoked first. The function may use any of the shell facilities,
including the compgen builtin described below, to generate the matches. 1t must put the possible
completionsinthe COMPREPLY array variable, one per array element.

Next, any command specified with the -C option is invoked in an environment equivalent to command
substitution. It should print alist of completions, one per ling, to the standard output. Backslash may
be used to escape a newline, if necessary.

After all of the possible completions are generated, any filter specified with the -X option is applied to
thelist. Thefilter isapattern as used for pathname expansion; a & in the pattern is replaced with the
text of the word being completed. A literal & may be escaped with a backslash; the backdash is
removed before attempting a match. Any completion that matches the pattern will be removed from
thelist. A leading ! negates the pattern; in this case any completion not matching the pattern will be
removed. If the nocasematch shell option is enabled, the match is performed without regard to the case
of aphabetic characters.

Finally, any prefix and suffix specified with the -P and -S options are added to each member of the
completion list, and the result is returned to the readline completion code as the list of possible
completions.

If the previously-applied actions do not generate any matches, and the -o dir names option was supplied
to complete when the compspec was defined, directory name completion is attempted.

If the -0 plusdirs option was supplied to complete when the compspec was defined, directory name
completion is attempted and any matches are added to the results of the other actions.

By default, if a compspec is found, whatever it generatesis returned to the completion code as the full
set of possible completions. The default bash completions are not attempted, and the readline default
of filename completion isdisabled. If the -0 bashdefault option was supplied to complete when the
compspec was defined, the bash default completions are attempted if the compspec generates no
matches. |If the -o default option was supplied to complete when the compspec was defined, readline's
default completion will be performed if the compspec (and, if attempted, the default bash completions)
generate no matches.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

When a compspec indicates that directory name completion is desired, the programmable completion
functions force readline to append a slash to completed names which are symbolic links to directories,
subject to the value of the mark-directories readline variable, regardless of the setting of the mark-
symlinked-directories readline variable.

There is some support for dynamically modifying completions. Thisis most useful when used in
combination with a default completion specified with complete-D. It s possible for shell functions
executed as completion handlers to indicate that completion should be retried by returning an exit
status of 124. If ashell function returns 124, and changes the compspec associated with the command
on which completion is being attempted (supplied as the first argument when the function is executed),
programmable completion restarts from the beginning, with an attempt to find a new compspec for that
command. Thisallows a set of completions to be built dynamically as completion is attempted, rather
than being loaded all at once.

For instance, assuming that thereisalibrary of compspecs, each kept in afile corresponding to the
name of the command, the following default completion function would load completions dynamically:

_completion_loader()

{
. "letc/bash_completion.d/$1.sh" >/dev/null 2>& 1 & & return 124

}
complete -D -F _completion_loader -0 bashdefault -0 default

HISTORY
When the -0 history option to the set builtin is enabled, the shell provides access to the command
history, the list of commands previously typed. The value of the HISTSI ZE variable is used as the
number of commandsto savein ahistory list. Thetext of thelast HI ST SIZE commands (default 500)
issaved. The shell stores each command in the history list prior to parameter and variable expansion
(see EXPANSION above) but after history expansion is performed, subject to the values of the shell
variables HISTIGNORE and HISTCONTROL.

On startup, the history isinitialized from the file named by the variable HISTFILE (default
~/.bash_history). The file named by the value of HI STFILE istruncated, if necessary, to contain no
more than the number of lines specified by the value of HISTFILESIZE. If HISTFILESIZE isunset, or
set to null, a non-numeric value, or a numeric value less than zero, the history file is not truncated.

When the history fileis read, lines beginning with the history comment character followed immediately
by adigit are interpreted as timestamps for the following history line. These timestamps are optionally
displayed depending on the value of the HISTTIMEFORMAT variable. When a shell with history
enabled exits, the last $HI ST SI ZE lines are copied from the history list to $HISTFILE. If the
histappend shell option is enabled (see the description of shopt under SHELL BUILTIN COMMANDS

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

below), the lines are appended to the history file, otherwise the history fileis overwritten. If
HISTFILE isunset, or if the history file is unwritable, the history is not saved. If the
HISTTIMEFORMAT variable is set, time stamps are written to the history file, marked with the
history comment character, so they may be preserved across shell sessions. This uses the history
comment character to distinguish timestamps from other history lines. After saving the history, the
history fileistruncated to contain no more than HISTFILESIZE lines. If HISTFILESIZE isunset, or
set to null, anon-numeric value, or anumeric value less than zero, the history file is not truncated.

The builtin command fc (see SHELL BUILTIN COMMANDS below) may be used to list or edit and

re-execute a portion of the history list. The history builtin may be used to display or modify the history
list and manipulate the history file. When using command-line editing, search commands are available
in each editing mode that provide accessto the history list.

The shell alows control over which commands are saved on the history list. The HISTCONTROL and
HISTIGNORE variables may be set to cause the shell to save only a subset of the commands entered.
The cmdhist shell option, if enabled, causes the shell to attempt to save each line of amulti-line
command in the same history entry, adding semicolons where necessary to preserve syntactic
correctness. Thelithist shell option causes the shell to save the command with embedded newlines
instead of semicolons. See the description of the shopt builtin below under SHELL BUILTIN
COMMANDS for information on setting and unsetting shell options.

HISTORY EXPANSION
The shell supports a history expansion feature that is similar to the history expansionin csh. This
section describes what syntax features are available. Thisfeatureis enabled by default for interactive
shells, and can be disabled using the +H option to the set builtin command (see SHELL BUILTIN
COMMANDS below). Non-interactive shells do not perform history expansion by default.

History expansions introduce words from the history list into the input stream, making it easy to repeat
commands, insert the arguments to a previous command into the current input line, or fix errorsin
previous commands quickly.

History expansion is performed immediately after a complete line is read, before the shell breaksit into
words, and is performed on each line individually without taking quoting on previous linesinto
account. It takes placein two parts. Thefirst isto determine which line from the history list to use
during substitution. The second is to select portions of that line for inclusion into the current one. The
line selected from the history is the event, and the portions of that line that are acted upon are words.
Various modifiers are available to manipulate the selected words. The lineis broken into wordsin the
same fashion as when reading input, so that several metachar acter-separated words surrounded by
guotes are considered one word. History expansions are introduced by the appearance of the history
expansion character, which is! by default. Only backslash (\) and single quotes can quote the history

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

expansion character, but the history expansion character is also treated as quoted if it immediately
precedes the closing double quote in a double-quoted string.

Several charactersinhibit history expansion if found immediately following the history expansion
character, even if it is unquoted: space, tab, newline, carriage return, and =. If the extglob shell option
is enabled, (will aso inhibit expansion.

Several shell options settable with the shopt builtin may be used to tailor the behavior of history
expansion. If the histverify shell option is enabled (see the description of the shopt builtin below), and
readline is being used, history substitutions are not immediately passed to the shell parser. Instead, the
expanded lineis reloaded into the readline editing buffer for further modification. If readlineisbeing
used, and the histreedit shell option is enabled, afailed history substitution will be reloaded into the
readline editing buffer for correction. The -p option to the history builtin command may be used to see
what a history expansion will do before using it. The -s option to the history builtin may be used to add
commands to the end of the history list without actually executing them, so that they are available for
subsequent recall.

The shell allows control of the various characters used by the history expansion mechanism (see the
description of histchars above under Shell Variables). The shell uses the history comment character to
mark history timestamps when writing the history file.

Event Designators
An event designator is areference to acommand line entry in the history list. Unlessthe referenceis
absolute, events are relative to the current position in the history list.

I Start ahistory substitution, except when followed by ablank, newline, carriage return, = or ((when
the extglob shell option is enabled using the shopt builtin).

In Refer to command line n.

I-n Refer to the current command minus n.

Il Refer to the previous command. Thisisasynonym for ‘!1-1’.

Istring
Refer to the most recent command preceding the current position in the history list starting with
string.

1?2string[?]
Refer to the most recent command preceding the current position in the history list containing
string. Thetrailing ? may be omitted if string isfollowed immediately by anewline. If stringis
missing, the string from the most recent search is used; it isan error if there is no previous search
string.

Astringl”string2”
Quick substitution. Repeat the previous command, replacing stringl with string2. Equivalent to

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

“1hshgtringl/string2?’ (see M odifiers below).
I# The entire command line typed so far.

Word Designators
Word designators are used to select desired words from the event. A : separates the event specification
from the word designator. It may be omitted if the word designator beginswitha”, $, *, -, or %.
Words are numbered from the beginning of the line, with the first word being denoted by O (zero).
Words are inserted into the current line separated by single spaces.

0(zero)
The zeroth word. For the shell, thisis the command word.

n Thenthword.

N Thefirst argument. That is, word 1.
Thelast word. Thisisusually the last argument, but will expand to the zeroth word if thereis only
oneword in theline.

% Thefirst word matched by the most recent ‘ ?string? search, if the search string begins with a
character that is part of aword.

x-y A range of words; ‘-y' abbreviates‘0-y'.

* All of the words but the zeroth. Thisisasynonym for ‘1-$'. Itisnot an error to use * if thereis
just one word in the event; the empty string is returned in that case.

x* Abbreviates x-$.

x- Abbreviates x-$ like x*, but omits the last word. If x ismissing, it defaultsto O.

If aword designator is supplied without an event specification, the previous command is used as the
event.

Modifiers
After the optional word designator, there may appear a sequence of one or more of the following
modifiers, each preceded by a*‘:’. These modify, or edit, the word or words selected from the history
event.

Remove atrailing filename component, leaving only the head.

Remove all leading filename components, leaving the tail.

Remove atrailing suffix of the form .xxx, leaving the basename.

Remove all but the trailing suffix.

Print the new command but do not execute it.

Quote the substituted words, escaping further substitutions.

Quote the substituted words as with g, but break into words at blanks and newlines. The g and x
modifiers are mutually exclusive; the last one supplied is used.

s/old/new/

X T 0o =~ —* =T

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Substitute new for the first occurrence of old in the event line. Any character may be used as the
delimiter in place of /. Thefinal delimiter is optional if it isthe last character of the event line.
The delimiter may be quoted in old and new with asingle backslash. If & appearsin new, itis
replaced by old. A single backslash will quotethe &. If oldisnull, it is set to the last old
substituted, or, if no previous history substitutions took place, the last string in a!?string[?] search.
If new isnull, each matching old is del eted.

Repest the previous substitution.

g Cause changesto be applied over the entire event line. Thisisused in conjunction with *:s' (e.g.,
“:ggold/new/’) or :&’. If used with ‘:s', any delimiter can be used in place of /, and the final
delimiter is optional if it isthe last character of the event line. An a may be used as a synonym for
g.

G Apply thefollowing ‘s or ‘&’ modifier once to each word in the event line.

SHELL BUILTIN COMMANDS
Unless otherwise noted, each builtin command documented in this section as accepting options
preceded by - accepts -- to signify the end of the options. The:, true, false, and test/[builtins do not
accept options and do not treat -- specially. The exit, logout, return, break, continue, let, and shift
builtins accept and process arguments beginning with - without requiring --. Other builtins that accept
arguments but are not specified as accepting options interpret arguments beginning with - asinvalid
options and require -- to prevent this interpretation.
. [arguments]
No effect; the command does nothing beyond expanding arguments and performing any specified
redirections. The return statusis zero.

. filename [arguments]

sour ce filename [arguments]
Read and execute commands from filename in the current shell environment and return the exit
status of the last command executed from filename. If filename does not contain a dlash, filenames
in PATH are used to find the directory containing filename, but filename does not need to be
executable. Thefile searched for in PATH need not be executable. When bash is not in posix
mode, it searches the current directory if no fileisfound in PATH. If the sour cepath option to the
shopt builtin command is turned off, the PATH is not searched. If any arguments are supplied,
they become the positional parameters when filename is executed. Otherwise the positional
parameters are unchanged. If the-T option isenabled, . inherits any trap on DEBUG; if it is not,
any DEBUG trap string is saved and restored around the call to ., and . unsets the DEBUG trap
whileit executes. If -T isnot set, and the sourced file changes the DEBUG trap, the new valueis
retained when . completes. The return status is the status of the last command exited within the
script (0 if no commands are executed), and false if filename is not found or cannot be read.

alias[-p] [name[=valug] ...]

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Alias with no arguments or with the -p option printsthe list of aliasesin the form alias name=value
on standard output. When arguments are supplied, an aliasis defined for each name whose value
isgiven. A trailing space in value causes the next word to be checked for alias substitution when
the aliasis expanded. For each name in the argument list for which no value is supplied, the name
and value of the aliasis printed. Alias returnstrue unless anameis given for which no aias has
been defined.

bg [jobspec ...]
Resume each suspended job jobspec in the background, as if it had been started with & . If jobspec
is not present, the shell’ s nation of the current job is used. bg jobspec returns 0 unless run when
job control is disabled or, when run with job control enabled, any specified jobspec was not found
or was started without job control.

bind [-m keymap] [-IpsvPSV X]
bind [-m keymap] [-q function] [-u function] [-r keyseq]
bind [-m keymap] -f filename
bind [-m keymap] -x keyseq:shell-command
bind [-m keymap] keyseq:function-name
bind [-m keymap] keyseq:readline-command
bind readline-command-line
Display current readline key and function bindings, bind a key sequence to areadline function or
macro, or set areadline variable. Each non-option argument is acommand as it would appear in a
readline initialization file such as .inputrc, but each binding or command must be passed as a
separate argument; e.g., ""\C-x\C-r": re-read-init-file’. Options, if supplied, have the following
meanings:
-m keymap
Use keymap as the keymap to be affected by the subsequent bindings. Acceptable keymap
names are emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi isequivalent to vi-command (vi-move is also a synonym); emacs is equivalent to
emacs-standard.
-l List the names of al readline functions.
-p Display readline function names and bindings in such away that they can be re-read.
-P List current readline function names and bindings.
-s Display readline key sequences bound to macros and the strings they output in such away that
they can be re-read.
-S Display readline key sequences bound to macros and the strings they output.
-v Display readline variable names and values in such away that they can be re-read.
-V List current readline variable names and values.
-f filename
Read key bindings from filename.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

-g function
Query about which keys invoke the named function.

-u function
Unbind all keys bound to the named function.

- keyseq
Remove any current binding for keyseq.

-X keyseq: shell-command
Cause shell-command to be executed whenever keyseq is entered. When shell-command is
executed, the shell setsthe READLINE_L INE variable to the contents of the readline line
buffer and the READLINE_POINT and READLINE_MARK variables to the current location
of theinsertion point and the saved insertion point (the mark), respectively. The shell assigns
any numeric argument the user supplied to the READLINE_ARGUMENT variable. If there
was no argument, that variable is not set. If the executed command changes the value of any
of READLINE_LINE, READLINE_POINT, or READLINE_MARK, those new values will
be reflected in the editing state.

-X List al key sequences bound to shell commands and the associated commands in aformat that
can be reused as input.

Thereturn value is 0 unless an unrecognized option is given or an error occurred.

break [n]
Exit from within afor, while, until, or select loop. If nisspecified, break nlevels. n must be >= 1.
If nisgreater than the number of enclosing loops, al enclosing loops are exited. The return value
isO unlessnis not greater than or equal to 1.

builtin shell-builtin [arguments]
Execute the specified shell builtin, passing it arguments, and return its exit status. Thisis useful
when defining afunction whose name is the same as a shell builtin, retaining the functionality of
the builtin within the function. The cd builtin is commonly redefined thisway. The return statusis
falseif shell-builtinis not a shell builtin command.

caller [expr]
Returns the context of any active subroutine call (ashell function or a script executed with the . or
sour ce builting). Without expr, caller displays the line number and source filename of the current
subroutine call. If anon-negative integer is supplied as expr, caller displays the line number,
subroutine name, and source file corresponding to that position in the current execution call stack.
This extrainformation may be used, for example, to print a stack trace. The current frameis frame
0. Thereturn valueis 0 unlessthe shell is not executing a subroutine call or expr does not
correspond to avalid position in the call stack.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

cd [-L|[-P [-e]] [-@]] [dir]
Change the current directory to dir. if dir isnot supplied, the value of the HOME shell variableis
the default. The variable CDPATH defines the search path for the directory containing dir: each
directory namein CDPATH issearched for dir. Alternative directory namesin CDPATH are
separated by acolon (:). A null directory name in CDPATH isthe same as the current directory,
i.e, .. If dir beginswith aslash (/), then CDPATH isnot used. The-P option causes cd to use
the physical directory structure by resolving symbolic links while traversing dir and before
processing instances of .. in dir (see also the -P option to the set builtin command); the -L option
forces symbolic links to be followed by resolving the link after processing instances of .. indir. If
.. appearsin dir, it is processed by removing the immediately previous pathname component from
dir, back to a dlash or the beginning of dir. If the -e option is supplied with -P, and the current
working directory cannot be successfully determined after a successful directory change, cd will
return an unsuccessful status. On systems that support it, the -@ option presents the extended
attributes associated with afile as a directory. An argument of - is converted to $OL DPWD before
the directory change is attempted. If a non-empty directory name from CDPATH isused, or if - is
the first argument, and the directory change is successful, the absolute pathname of the new
working directory iswritten to the standard output. If the directory changeis successful, cd sets
the value of the PWD environment variable to the new directory name, and setsthe OLDPWD
environment variable to the value of the current working directory before the change. The return
valueistrueif the directory was successfully changed; false otherwise.

command [-pVv] command [arg ...]
Run command with args suppressing the normal shell function lookup. Only builtin commands or
commands found in the PATH are executed. If the -p option is given, the search for command is
performed using a default value for PATH that is guaranteed to find all of the standard utilities. If
either the -V or -v option is supplied, a description of command is printed. The -v option causes a
single word indicating the command or filename used to invoke command to be displayed; the -V
option produces amore verbose description. If the-V or -v option is supplied, the exit statusis O if
command was found, and 1 if not. If neither option is supplied and an error occurred or command
cannot be found, the exit statusis 127. Otherwise, the exit status of the command builtin is the exit
status of command.

compgen [option] [word]
Generate possible completion matches for word according to the options, which may be any option
accepted by the complete builtin with the exception of -p and -r, and write the matches to the
standard output. When using the -F or -C options, the various shell variables set by the
programmable completion facilities, while available, will not have useful values.

The matches will be generated in the same way asif the programmable completion code had
generated them directly from a completion specification with the same flags. If word is specified,

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

only those compl etions matching word will be displayed.
The return value istrue unless an invalid option is supplied, or no matches were generated.

complete [-abcdefgjksuv] [-0 comp-option] [-DEI] [-A action] [-G globpat] [-W wordlist]
[-F function] [-C command] [-X filterpat] [-P prefix] [-S suffix] name [name ...]

complete -pr [-DEI] [name ...]
Specify how arguments to each name should be completed. If the -p option is supplied, or if no
options are supplied, existing completion specifications are printed in away that allows them to be
reused asinput. The -r option removes a completion specification for each name, or, if no names
are supplied, all completion specifications. The -D option indicates that other supplied options and
actions should apply to the ‘*default’”” command completion; that is, completion attempted on a
command for which no completion has previously been defined. The -E option indicates that other
supplied options and actions should apply to ‘*empty’’ command completion; that is, completion
attempted on ablank line. The -l option indicates that other supplied options and actions should
apply to completion on the initial non-assignment word on the line, or after acommand delimiter
such as; or |, which is usually command name completion. If multiple options are supplied, the -D
option takes precedence over -E, and both take precedence over -1. If any of -D, -E, or -I are
supplied, any other name arguments are ignored; these compl etions only apply to the case
specified by the option.

The process of applying these completion specifications when word completion is attempted is
described above under Programmable Completion.

Other options, if specified, have the following meanings. The argumentsto the -G, -W, and -X
options (and, if necessary, the -P and -S options) should be quoted to protect them from expansion
before the complete builtin isinvoked.
-0 comp-option
The comp-option controls several aspects of the compspec’ s behavior beyond the simple
generation of completions. comp-option may be one of:
bashdefault
Perform the rest of the default bash completionsif the compspec generates no
matches.
default Usereadline' s default filename completion if the compspec generates no
matches.
dirnames Perform directory name completion if the compspec generates no matches.
filenames
Tell readline that the compspec generates filenames, so it can perform any
filename-specific processing (like adding a slash to directory names, quoting
specia characters, or suppressing trailing spaces). Intended to be used with

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

shell functions.

nogquote Tell readline not to quote the completed words if they are filenames (quoting
filenamesis the default).

nosort Tell readline not to sort the list of possible completions alphabetically.

nospace Tell readline not to append a space (the default) to words completed at the end
of theline.

plusdirs After any matches defined by the compspec are generated, directory name
completion is attempted and any matches are added to the results of the other
actions.

-A action The action may be one of the following to generate alist of possible completions:

alias Aliasnames. May also be specified as -a.

arrayvar Array variable names.

binding Readline key binding names.

builtin ~ Names of shell builtin commands. May also be specified as -b.

command
Command names. May aso be specified as -c.

directory Directory names. May also be specified as-d.

disabled Names of disabled shell builtins.

enabled Names of enabled shell builtins.

export Names of exported shell variables. May also be specified as -e.

file File names. May also be specified as -f.

function Names of shell functions.

group Group names. May also be specified as -g.

helptopic Help topics as accepted by the help builtin.

hostname
Hostnames, as taken from the file specified by the HOSTFILE shell variable.
job Job names, if job control is active. May also be specified as-j.

keyword Shell reserved words. May also be specified as -k.
running Names of running jobs, if job control is active.
service Service names. May also be specified as -s.

setopt Valid arguments for the -0 option to the set builtin.
shopt Shell option names as accepted by the shopt builtin.
signal Signal names.

stopped Names of stopped jobs, if job control is active.

user User names. May also be specified as -u.
variable Namesof al shell variables. May also be specified as -v.
-C command

command is executed in a subshell environment, and its output is used as the possible
completions. Arguments are passed as with the -F option.
-F function

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

The shell function function is executed in the current shell environment. When the
function is executed, the first argument ($1) is the name of the command whose
arguments are being completed, the second argument ($2) is the word being compl eted,
and the third argument ($3) is the word preceding the word being completed on the
current command line. When it finishes, the possible completions are retrieved from the
value of the COMPREPLY array variable.

-G globpat
The pathname expansion pattern globpat is expanded to generate the possible
completions.

-P prefix prefix is added at the beginning of each possible completion after all other options have
been applied.

-Ssuffix suffix is appended to each possible completion after all other options have been applied.

-W wordlist
Thewordlist is split using the charactersin the | FS special variable as delimiters, and
each resultant word is expanded. Shell quoting is honored within wordlist, in order to
provide a mechanism for the words to contain shell metacharacters or charactersin the
value of IFS. The possible completions are the members of the resultant list which
match the word being compl eted.

-X filterpat
filterpat is a pattern as used for pathname expansion. It isapplied to the list of possible
completions generated by the preceding options and arguments, and each completion
matching filterpat is removed from thelist. A leading! in filterpat negates the pattern; in
this case, any completion not matching filterpat is removed.

Thereturn value is true unless an invalid option is supplied, an option other than -p or -r is
supplied without a name argument, an attempt is made to remove a compl etion specification for a
name for which no specification exists, or an error occurs adding a completion specification.

compopt [-o option] [-DEI] [+0 option] [name]
Modify completion options for each name according to the options, or for the currently-executing
completion if no names are supplied. If no options are given, display the completion options for
each name or the current completion. The possible values of option are those valid for the
complete builtin described above. The -D option indicates that other supplied options should apply
to the ‘‘default’”’ command completion; that is, completion attempted on a command for which no
completion has previously been defined. The -E option indicates that other supplied options
should apply to ‘*empty’’ command completion; that is, completion attempted on ablank line.
The -1 option indicates that other supplied options should apply to completion on the initial non-
assignment word on the line, or after acommand delimiter such as; or |, which is usually
command name compl etion.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Thereturn value is true unless an invalid option is supplied, an attempt is made to modify the
options for a name for which no completion specification exists, or an output error occurs.

continue [n]
Resume the next iteration of the enclosing for, while, until, or select loop. If nis specified, resume
at the nth enclosing loop. n must be >= 1. If nisgreater than the number of enclosing loops, the
last enclosing loop (the ‘*top-level’’ loop) isresumed. Thereturn value is O unless n is not greater
than or equal to 1.

declare [-aAfFgilInrtux] [-p] [name[=valug] ...]
typeset [-aAfFgillnrtux] [-p] [name[=valug] ...]

Declare variables and/or give them attributes. If no names are given then display the values of

variables. The -p option will display the attributes and values of each name. When -p is used with

name arguments, additional options, other than -f and -F, areignored. When -p is supplied without
name arguments, it will display the attributes and values of all variables having the attributes
specified by the additional options. If no other options are supplied with -p, declare will display
the attributes and values of all shell variables. The -f option will restrict the display to shell
functions. The -F option inhibits the display of function definitions; only the function name and
attributes are printed. If the extdebug shell option is enabled using shopt, the source file name and
line number where each name is defined are displayed aswell. The -F option implies-f. The-g
option forces variables to be created or modified at the global scope, even when declareis
executed in ashell function. Itisignored in all other cases. The -l option causeslocal variablesto
inherit the attributes (except the nameref attribute) and value of any existing variable with the same
name at a surrounding scope. If thereisno existing variable, the local variableisinitialy unset.

The following options can be used to restrict output to variables with the specified attribute or to

give variables attributes:

-a Each nameisanindexed array variable (see Arrays above).

-A Each nameisan associative array variable (see Arrays above).

-f Usefunction names only.

-l Thevariableistreated as an integer; arithmetic evaluation (see ARITHMETIC
EVALUATION above) is performed when the variable is assigned a value.

-l When the variableis assigned avalue, al upper-case characters are converted to lower-case.
The upper-case attribute is disabled.

-n Give each name the nameref attribute, making it a name reference to another variable. That
other variable is defined by the value of name. All references, assignments, and attribute
modifications to name, except those using or changing the -n attribute itself, are performed on
the variable referenced by name’ svalue. The nameref attribute cannot be applied to array
variables.

-r Make namesreadonly. These names cannot then be assigned values by subsequent
assignment statements or unset.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

-t Give each namethe trace attribute. Traced functions inherit the DEBUG and RETURN traps
from the calling shell. The trace attribute has no special meaning for variables.

-u When the variable is assigned a value, all lower-case characters are converted to upper-case.
The lower-case attribute is disabled.

-X Mark names for export to subsequent commands via the environment.

Using '+’ instead of ‘-’ turns off the attribute instead, with the exceptions that +a and +A may not
be used to destroy array variables and +r will not remove the readonly attribute. When usedin a
function, declar e and typeset make each name local, as with the local command, unless the -g
option issupplied. If avariable nameisfollowed by =value, the value of the variable is set to
value. When using -a or -A and the compound assignment syntax to create array variables,
additional attributes do not take effect until subsequent assignments. The return value is 0 unless
an invalid option is encountered, an attempt is made to define a function using **-f foo=bar’’, an
attempt is made to assign avalue to areadonly variable, an attempt is made to assign avalueto an
array variable without using the compound assignment syntax (see Arrays above), one of the
namesis not avalid shell variable name, an attempt is made to turn off readonly status for a
readonly variable, an attempt is made to turn off array status for an array variable, or an attempt is
made to display a non-existent function with -f.

dirs[-clpv] [+n] [-N]

Without options, displaysthe list of currently remembered directories. The default display ison a

single line with directory names separated by spaces. Directories are added to the list with the

pushd command; the popd command removes entries from the list. The current directory is always

thefirst directory in the stack.

-c Clearsthe directory stack by deleting all of the entries.

-l Produces alisting using full pathnames; the default listing format uses atilde to denote the
home directory.

-p Print the directory stack with one entry per line.

-v Print the directory stack with one entry per line, prefixing each entry with itsindex in the
stack.

+n Displays the nth entry counting from the left of the list shown by dirs when invoked without
options, starting with zero.

-n Displays the nth entry counting from the right of the list shown by dir s when invoked without
options, starting with zero.

Thereturn value is 0 unless an invalid option is supplied or n indexes beyond the end of the
directory stack.

disown [-ar] [-h] [jobspec ... | pid ...]
Without options, remove each jobspec from the table of active jobs. If jobspec is not present, and

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

neither the -a nor the -r option is supplied, the current job isused. If the -h option is given, each
jobspec is not removed from the table, but is marked so that SIGHUP is not sent to the job if the
shell receivesa SIGHUP. If no jobspec is supplied, the -a option means to remove or mark all
jobs; the -r option without a jobspec argument restricts operation to running jobs. The return value
is 0 unless a jobspec does not specify avalid job.

echo [-neE] [arg ...]
Output the args, separated by spaces, followed by anewline. The return statusis O unless awrite
error occurs. If -n is specified, the trailing newline is suppressed. If the -e option is given,
interpretation of the following backslash-escaped charactersis enabled. The -E option disables the
interpretation of these escape characters, even on systems where they are interpreted by default.
The xpg_echo shell option may be used to dynamically determine whether or not echo expands
these escape characters by default. echo does not interpret -- to mean the end of options. echo
interprets the following escape sequences:
\a aert (bell)
\b backspace
\c suppress further output
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab

\v vertical tab
\\ backdlash
\Onnn
the eight-bit character whose value is the octal value nnn (zero to three octal digits)
\XHH
the eight-bit character whose value is the hexadecimal value HH (one or two hex digits)
\uHHHH
the Unicode (1SO/IEC 10646) character whose value is the hexadecimal value HHHH (one to
four hex digits)
\UHHHHHHHH
the Unicode (1SO/IEC 10646) character whose value is the hexadecimal value HHHHHHHH
(oneto eight hex digits)

enable [-a] [-dnpg] [-f filename] [name ...]
Enable and disable builtin shell commands. Disabling a builtin alows a disk command which has
the same name as a shell builtin to be executed without specifying afull pathname, even though
the shell normally searches for builtins before disk commands. If -n isused, each nameis

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

disabled; otherwise, names are enabled. For example, to use the test binary found viathe PATH
instead of the shell builtin version, run ‘‘enable -n test’’. The -f option meansto load the new
builtin command name from shared object filename, on systems that support dynamic loading.
Bash will use the value of the BASH L OADABLES PATH variable as a colon-separated list of
directories in which to search for filename. The default is system-dependent. The -d option will
delete a builtin previously loaded with -f. 1f no name arguments are given, or if the -p option is
supplied, alist of shell builtinsis printed. With no other option arguments, the list consists of all
enabled shell builtins. If -n is supplied, only disabled builtins are printed. If -ais supplied, the list
printed includes all builtins, with an indication of whether or not each is enabled. If -sis supplied,
the output is restricted to the POSIX special builtins. If no options are supplied and anameis not a
shell builtin, enable will attempt to load name from a shared object named name, asif the
command were ‘‘enable -f name name . The return value is 0 unless anameis not a shell builtin or
thereis an error loading a new builtin from a shared object.

eval [arg ...]
The args are read and concatenated together into a single command. This command is then read
and executed by the shell, and its exit statusis returned as the value of eval. If there are no args, or
only null arguments, eval returns 0.

exec [-cl] [-a name] [command [arguments]]
If command is specified, it replaces the shell. No new processis created. The arguments become
the arguments to command. |If the -1 option is supplied, the shell places a dash at the beginning of
the zeroth argument passed to command. Thisiswhat login(1) does. The -c option causes
command to be executed with an empty environment. If -a is supplied, the shell passes name as
the zeroth argument to the executed command. If command cannot be executed for some reason, a
non-interactive shell exits, unless the execfail shell option isenabled. In that case, it returns
failure. Aninteractive shell returnsfailureif the file cannot be executed. A subshell exits
unconditionally if exec fails. If command is not specified, any redirections take effect in the
current shell, and the return statusis 0. If thereisaredirection error, the return statusis 1.

exit [n]
Cause the shell to exit with astatus of n. If nisomitted, the exit statusis that of the last command
executed. A trap on EXIT isexecuted before the shell terminates.

export [-fn] [name[=word]] ...

export -p
The supplied names are marked for automatic export to the environment of subsequently executed
commands. If the -f option is given, the names refer to functions. If no names are given, or if the
-p optionis supplied, alist of names of all exported variablesis printed. The -n option causes the
export property to be removed from each name. If avariable nameisfollowed by =word, the

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

value of the variableis set to word. export returns an exit status of O unless an invalid optionis
encountered, one of the namesis not avalid shell variable name, or -f is supplied with a name that
is not afunction.

fc [-e ename] [-Inr] [first] [last]

fc -s[pat=rep] [cmd]
The first form selects arange of commands from first to last from the history list and displays or
edits and re-executes them. First and last may be specified as a string (to locate the last command
beginning with that string) or as a number (an index into the history list, where a negative number
is used as an offset from the current command number). When listing, afirst or last of Ois
equivalent to -1 and -0 is equivalent to the current command (usually the fc command); otherwise
Oisequivalentto-1and-0Oisinvalid. If last isnot specified, it is set to the current command for
listing (so that *‘fc -1 -10"" prints the last 10 commands) and to first otherwise. If first is not
specified, it is set to the previous command for editing and -16 for listing.

The -n option suppresses the command numbers when listing. The -r option reverses the order of
the commands. If the -l option is given, the commands are listed on standard output. Otherwise,
the editor given by ename isinvoked on afile containing those commands. If enameis not given,
the value of the FCEDI T variableis used, and the value of EDITOR if FCEDIT isnot set. If
neither variable is set, vi isused. When editing is complete, the edited commands are echoed and
executed.

In the second form, command is re-executed after each instance of pat is replaced by rep.
Command is interpreted the same asfirst above. A useful diasto use with thisis*‘r="fc-s"’, so
that typing ‘‘r cc’’ runsthe last command beginning with *‘cc’’ and typing ‘‘r’’ re-executes the last
command.

If the first form is used, the return value is 0 unless an invalid option is encountered or first or last
specify history lines out of range. If the -e option is supplied, the return value is the value of the
last command executed or failure if an error occurs with the temporary file of commands. If the
second form is used, the return status is that of the command re-executed, unless cmd does not
specify avalid history line, in which case fc returns failure.

fg [jobspec]
Resume jobspec in the foreground, and make it the current job. If jobspec is not present, the
shell’s notion of the current job isused. The return valueisthat of the command placed into the
foreground, or failure if run when job control is disabled or, when run with job control enabled, if
jobspec does not specify avalid job or jobspec specifies ajob that was started without job control.

getopts optstring name [arg ...]

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

getoptsis used by shell procedures to parse positional parameters. optstring contains the option
characters to be recognized; if a character isfollowed by a colon, the option is expected to have an
argument, which should be separated from it by white space. The colon and question mark
characters may not be used as option characters. Each timeit isinvoked, getopts places the next
option in the shell variable name, initializing name if it does not exist, and the index of the next
argument to be processed into the variable OPTIND. OPTIND isinitialized to 1 each time the
shell or ashell script isinvoked. When an option requires an argument, getopts places that
argument into the variable OPTARG. The shell does not reset OPTIND automatically; it must be
manually reset between multiple calls to getopts within the same shell invocation if a new set of
parametersisto be used.

When the end of optionsis encountered, getopts exits with areturn value greater than zero.
OPTIND is set to the index of the first non-option argument, and name is set to 2.

getopts normally parses the positional parameters, but if more arguments are supplied as arg
values, getopts parses those instead.

getopts can report errorsin two ways. If the first character of optstring isa colon, silent error
reporting isused. In normal operation, diagnostic messages are printed when invalid options or
missing option arguments are encountered. If the variable OPTERR is set to 0, no error messages
will be displayed, even if the first character of optstring is not a colon.

If aninvalid option is seen, getopts places ? into name and, if not silent, prints an error message
and unsets OPTARG. If getoptsissilent, the option character found is placed in OPTARG and no
diagnostic message is printed.

If arequired argument is not found, and getoptsis not silent, a question mark (?) is placed in name,
OPTARG isunset, and adiagnostic message is printed. If getoptsissilent, thenacolon (;) is
placed in name and OPTARG is set to the option character found.

getoptsreturns true if an option, specified or unspecified, isfound. It returnsfalseif the end of
optionsis encountered or an error occurs.

hash [-Ir] [-p filename] [-dt] [name]
Each time hash isinvoked, the full pathname of the command name is determined by searching the
directoriesin $PATH and remembered. Any previously-remembered pathname is discarded. |If
the -p option is supplied, no path search is performed, and filename is used as the full filename of
the command. The -r option causes the shell to forget all remembered locations. The -d option
causes the shell to forget the remembered location of each name. If the -t option is supplied, the
full pathname to which each name correspondsis printed. 1f multiple name arguments are supplied

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

with -t, the name is printed before the hashed full pathname. The -I option causes output to be
displayed in aformat that may be reused asinput. If no arguments are given, or if only -l is
supplied, information about remembered commands is printed. The return status is true unless a
nameis not found or an invalid option is supplied.

help [-dmg] [pattern]
Display helpful information about builtin commands. If pattern is specified, help gives detailed
help on al commands matching pattern; otherwise help for al the builtins and shell control
structuresiis printed.
-d Display ashort description of each pattern
-m Display the description of each pattern in a manpage-like format
-s Display only ashort usage synopsis for each pattern

The return statusis 0 unless no command matches pattern.

history [n]
history -c
history -d offset
history -d start-end
history -anrw [filename]
history -p arg [arg ...]
history -sarg[arg ...]
With no options, display the command history list with line numbers. Lineslisted with a* have
been modified. An argument of n listsonly the last nlines. If the shell variable
HISTTIMEFORMAT isset and not null, it is used as aformat string for strftime(3) to display the
time stamp associated with each displayed history entry. No intervening blank is printed between
the formatted time stamp and the history line. If filenameis supplied, it is used as the name of the
history file; if not, the value of HISTFILE isused. Options, if supplied, have the following
meanings.
-c Clear the history list by deleting all the entries.
-d offset
Delete the history entry at position offset. If offset is negative, it isinterpreted asrelative to
one greater than the last history position, so negative indices count back from the end of the
history, and an index of -1 refersto the current history -d command.
-d start-end
Delete the range of history entries between positions start and end, inclusive. Positive and
negative values for start and end are interpreted as described above.
-a Appendthe‘'‘new’’ history linesto the history file. These are history lines entered since the
beginning of the current bash session, but not already appended to the history file.
-n Read the history lines not already read from the history file into the current history list. These

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

are lines appended to the history file since the beginning of the current bash session.

-r Read the contents of the history file and append them to the current history list.

-w Write the current history list to the history file, overwriting the history fil€'s contents.

-p Perform history substitution on the following args and display the result on the standard
output. Does not store the resultsin the history list. Each arg must be quoted to disable
normal history expansion.

-s Storetheargsin the history list asasingle entry. The last command in the history list is
removed before the args are added.

If the HISTTIMEFORMAT variableis set, the time stamp information associated with each
history entry is written to the history file, marked with the history comment character. When the
history fileis read, lines beginning with the history comment character followed immediately by a
digit are interpreted as timestamps for the following history entry. The return value is 0 unless an
invalid option is encountered, an error occurs while reading or writing the history file, aninvalid
offset or range is supplied as an argument to -d, or the history expansion supplied as an argument
to -p fails.

jobs[-Inprg] [jobspec ...]
jobs-x command [args...]
Thefirst form lists the active jobs. The options have the following meanings:
-l List process IDsin addition to the normal information.
-n Display information only about jobs that have changed status since the user was last notified
of their status.
-p List only the process ID of the job’s process group leader.
-r Display only running jobs.
-s Display only stopped jobs.

If jobspec is given, output is restricted to information about that job. The return statusis 0 unless
an invalid option is encountered or an invalid jobspec is supplied.

If the -x option is supplied, jobs replaces any jobspec found in command or args with the
corresponding process group 1D, and executes command passing it args, returning its exit status.

Kill [-s sigspec | -n signum | -sigspec] [pid | jobspec] ...

Kill -1J-L [sigspec | exit_status]
Send the signal named by sigspec or signum to the processes named by pid or jobspec. sigspecis
either a case-insensitive signal name such as SIGKILL (with or without the SIG prefix) or asignal
number; signumisasignal number. If sigspecis not present, then SIGTERM isassumed. An
argument of -I liststhe signal names. If any arguments are supplied when -1 is given, the names of
the signal's corresponding to the arguments are listed, and the return statusis 0. The exit_status

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

argument to -1 is a number specifying either asignal number or the exit status of a process
terminated by asignal. The -L option isequivalent to -I. kill returnstrueif at least one signal was
successfully sent, or false if an error occurs or an invalid option is encountered.

let arg [arg ...]
Each argis an arithmetic expression to be evaluated (see ARITHMETIC EVALUATION above).
If the last arg evaluatesto O, let returns 1; O is returned otherwise.

local [option] [name[=valug] ... | -]
For each argument, alocal variable named name is created, and assigned value. The option can be
any of the options accepted by declare. When local is used within afunction, it causes the variable
name to have a visible scope restricted to that function and its children. If nameis -, the set of
shell optionsis made local to the function in which local isinvoked: shell options changed using
the set builtin inside the function are restored to their origina values when the function returns.
Therestoreis effected asif a series of set commands were executed to restore the values that were
in place before the function. With no operands, local writesalist of local variables to the standard
output. Itisan error to uselocal when not within afunction. The return statusis O unlesslocal is
used outside a function, an invalid nameis supplied, or name is areadonly variable.

logout
Exit alogin shell.

mapfile [-d delim] [-n count] [-O origin] [-s count] [-t] [-u fd] [-C callback] [-c quantum] [array]
readarray [-d delim] [-n count] [-O origin] [-s count] [-t] [-u fd] [-C callback] [-c quantum] [array]
Read lines from the standard input into the indexed array variable array, or from file descriptor fd
if the -u optionis supplied. Thevariable MAPFILE isthe default array. Options, if supplied, have
the following meanings:
-d Thefirst character of delimis used to terminate each input line, rather than newline. If delim
isthe empty string, mapfile will terminate aline when it reads a NUL character.
-n Copy at most count lines. If count isO, all lines are copied.
-O Begin assigning to array at index origin. The default index isO.
-s Discard the first count lines read.
-t Remove atrailing delim (default newline) from each line read.
-u Read lines from file descriptor fd instead of the standard input.
-C Evaluate callback each time quantum lines are read. The -c option specifies quantum.
-c Specify the number of lines read between each call to callback.

If -C is specified without -c, the default quantum is 5000. When callback is evaluated, it is

supplied the index of the next array element to be assigned and the line to be assigned to that
element as additional arguments. callback is evaluated after the line isread but before the array

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

element is assigned.
If not supplied with an explicit origin, mapfile will clear array before assigning to it.

mapfile returns successfully unless an invalid option or option argument is supplied, array is
invalid or unassignable, or if array is not an indexed array.

popd [-n] [+n] [-n]

Removes entries from the directory stack. The elements are numbered from 0 starting at the first

directory listed by dirs. With no arguments, popd removes the top directory from the stack, and

changes to the new top directory. Arguments, if supplied, have the following meanings:

-n Suppresses the normal change of directory when removing directories from the stack, so that
only the stack is manipulated.

+n Removes the nth entry counting from the | eft of the list shown by dirs, starting with zero, from
the stack. For example: *‘popd +0'’ removes the first directory, ‘‘popd +1'’ the second.

-n Removes the nth entry counting from the right of the list shown by dirs, starting with zero.
For example: *‘popd -0’ removes the last directory, ‘‘popd -1'’ the next to last.

If the top element of the directory stack is modified, and the -n option was not supplied, popd uses
the cd builtin to change to the directory at the top of the stack. If the cd fails, popd returns a non-
zero value.

Otherwise, popd returnsfalseif an invalid option is encountered, the directory stack isempty, or a
non-existent directory stack entry is specified.

If the popd command is successful, bash runs dir s to show the final contents of the directory stack,
and the return statusis 0.

printf [-v var] format [arguments]
Write the formatted arguments to the standard output under the control of the format. The -v
option causes the output to be assigned to the variable var rather than being printed to the standard
output.

The format is a character string which contains three types of objects: plain characters, which are

simply copied to standard output, character escape sequences, which are converted and copied to

the standard output, and format specifications, each of which causes printing of the next successive

argument. In addition to the standard printf(1) format specifications, printf interprets the following

extensions:

%0b causes printf to expand backslash escape sequencesin the corresponding argument in the same
way as echo -e.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

%4q causes printf to output the corresponding argument in aformat that can be reused as shell
input.

%Q
like % q, but applies any supplied precision to the argument before quoting it.

% (datefmt) T
causes printf to output the date-time string resulting from using datefmt as a format string for
stritime(3). The corresponding argument is an integer representing the number of seconds
since the epoch. Two specia argument values may be used: -1 represents the current time,
and -2 represents the time the shell wasinvoked. If no argument is specified, conversion
behaves asif -1 had been given. Thisis an exception to the usual printf behavior.

The %b, %q, and %T directives all use the field width and precision arguments from the format
specification and write that many bytes from (or use that wide afield for) the expanded argument,
which usually contains more characters than the original.

Arguments to non-string format specifiers are treated as C constants, except that aleading plus or
minus sign is allowed, and if the leading character is a single or double quote, the value isthe
ASCII value of the following character.

Theformat is reused as necessary to consume all of the arguments. If the format requires more
arguments than are supplied, the extraformat specifications behave asif a zero value or null string,
as appropriate, had been supplied. The return value is zero on success, hon-zero on failure.

pushd [-n] [+n] [-n]
pushd [-n] [dir]
Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the
stack the current working directory. With no arguments, pushd exchanges the top two el ements of
the directory stack. Arguments, if supplied, have the following meanings.
-n Suppresses the normal change of directory when rotating or adding directories to the stack, so
that only the stack is manipulated.
+n Rotates the stack so that the nth directory (counting from the left of the list shown by dirs,
starting with zero) is at the top.
-n Rotates the stack so that the nth directory (counting from the right of the list shown by dirs,
starting with zero) is at the top.
dir Addsdir to the directory stack at the top

After the stack has been modified, if the -n option was not supplied, pushd uses the cd builtin to
change to the directory at the top of the stack. If the cd fails, pushd returns a non-zero value.

Otherwise, if no arguments are supplied, pushd returns 0 unless the directory stack is empty.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

When rotating the directory stack, pushd returns O unless the directory stack is empty or a non-
existent directory stack element is specified.

If the pushd command is successful, bash runs dir sto show the final contents of the directory
stack.

pwd [-LP]
Print the absolute pathname of the current working directory. The pathname printed contains no
symbolic links if the -P option is supplied or the -0 physical option to the set builtin command is
enabled. If the-L option is used, the pathname printed may contain symbolic links. The return
statusis 0 unless an error occurs while reading the name of the current directory or an invalid
option is supplied.

read [-ers] [-a aname] [-d delim] [-i text] [-n nchars] [-N nchars] [-p prompt] [-t timeout] [-u fd] [name

...] Onelineisread from the standard input, or from the file descriptor fd supplied as an argument to
the -u option, split into words as described above under Word Splitting, and the first word is
assigned to the first name, the second word to the second name, and so on. If there are more words
than names, the remaining words and their intervening delimiters are assigned to the last name. |If
there are fewer words read from the input stream than names, the remaining names are assigned
empty values. The charactersin | FS are used to split the line into words using the same rules the
shell uses for expansion (described above under Word Splitting). The backslash character (\) may
be used to remove any special meaning for the next character read and for line continuation.

Options, if supplied, have the following meanings:

-a aname
The words are assigned to sequentia indices of the array variable aname, starting at 0. aname
is unset before any new values are assigned. Other name arguments are ignored.

-d delim
Thefirst character of delimis used to terminate the input line, rather than newline. If delimis
the empty string, read will terminate aline when it reads a NUL character.

-e If the standard input is coming from aterminal, readline (see READLINE above) is used to
obtain the line. Readline uses the current (or default, if line editing was not previously active)
editing settings, but uses readline’ s default filename completion.

-i text
If readlineis being used to read the line, text is placed into the editing buffer before editing
begins.

-n nchars
read returns after reading nchars characters rather than waiting for a complete line of input, but
honors a delimiter if fewer than nchars characters are read before the delimiter.

-N nchars
read returns after reading exactly nchars characters rather than waiting for a complete line of

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

input, unless EOF is encountered or read timesout. Delimiter characters encountered in the
input are not treated specially and do not cause read to return until nchars characters are read.
The result is not split on the charactersin I FS; the intent is that the variable is assigned exactly
the characters read (with the exception of backslash; seethe -r option below).

-p prompt
Display prompt on standard error, without atrailing newline, before attempting to read any
input. The prompt is displayed only if input is coming from aterminal.

-r Backdash does not act as an escape character. The backslash is considered to be part of the
line. In particular, abacksash-newline pair may not then be used as a line continuation.

-s Silent mode. If input is coming from aterminal, characters are not echoed.

-t timeout
Causeread to time out and return failure if a complete line of input (or a specified number of
characters) is not read within timeout seconds. timeout may be a decimal number with a
fractional portion following the decimal point. Thisoption isonly effectiveif read isreading
input from aterminal, pipe, or other special file; it has no effect when reading from regular
files. If read times out, read saves any partial input read into the specified variable name. If
timeout is O, read returns immediately, without trying to read any data. The exit statusis O if
input is available on the specified file descriptor, or the read will return EOF, non-zero
otherwise. The exit statusis greater than 128 if the timeout is exceeded.

-u fd
Read input from file descriptor fd.

If no names are supplied, the line read, without the ending delimiter but otherwise unmodified, is
assigned to the variable REPL Y. The exit statusis zero, unless end-of-file is encountered, read
times out (in which case the status is greater than 128), a variable assignment error (such as
assigning to areadonly variable) occurs, or an invalid file descriptor is supplied as the argument to
-U.

readonly [-aAf] [-p] [name[=word] ...]
The given names are marked readonly; the values of these names may not be changed by
subsequent assignment. If the -f option is supplied, the functions corresponding to the names are
so marked. The -a option restricts the variables to indexed arrays; the -A option restricts the
variables to associative arrays. If both options are supplied, -A takes precedence. If no name
arguments are given, or if the -p option is supplied, alist of al readonly namesis printed. The
other options may be used to restrict the output to a subset of the set of readonly names. The -p
option causes output to be displayed in aformat that may be reused asinput. If avariable nameis
followed by =word, the value of the variableis set to word. Thereturn statusis O unlessan invalid
option is encountered, one of the namesis not avalid shell variable name, or -f is supplied with a
name that is not a function.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

return [n]
Causes a function to stop executing and return the value specified by ntoitscaller. If nisomitted,
the return status is that of the last command executed in the function body. If return is executed by
atrap handler, the last command used to determine the status is the last command executed before
thetrap handler. If return isexecuted during a DEBUG trap, the last command used to determine
the statusis the last command executed by the trap handler before return wasinvoked. If returnis
used outside a function, but during execution of ascript by the. (source) command, it causes the
shell to stop executing that script and return either n or the exit status of the last command
executed within the script as the exit status of the script. If nissupplied, the return valueisits
least significant 8 bits. The return statusis non-zero if return is supplied a non-numeric argument,
or is used outside a function and not during execution of a script by . or source. Any command
associated with the RETURN trap is executed before execution resumes after the function or
script.

set [-abefhkmnptuvxBCEHPT] [-0 option-name] [--] [-] [arg ...]

set [+abefhkmnptuvxBCEHPT] [+0 option-name] [--] [-] [arg ...]
Without options, display the name and value of each shell variablein aformat that can be reused
asinput for setting or resetting the currently-set variables. Read-only variables cannot bereset. In
posix mode, only shell variables arelisted. The output is sorted according to the current locale.
When options are specified, they set or unset shell attributes. Any arguments remaining after
option processing are treated as values for the positional parameters and are assigned, in order, to
$1, $2, ... $n. Options, if specified, have the following meanings.

-a Each variable or function that is created or modified is given the export attribute and
marked for export to the environment of subsegquent commands.

-b Report the status of terminated background jobs immediately, rather than before the next
primary prompt. Thisis effective only when job control is enabled.

-e Exit immediately if a pipeline (which may consist of a single simple command), alist, or

a compound command (see SHELL GRAMMAR above), exits with a non-zero status.
The shell does not exit if the command that failsis part of the command list immediately
following awhile or until keyword, part of the test following theif or €lif reserved
words, part of any command executed ina & & or || list except the command following
thefinal & & or ||, any command in a pipeline but the last, or if the command’ s return
valueisbeing inverted with !. If acompound command other than a subshell returns a
non-zero status because a command failed while -e was being ignored, the shell does not
exit. A trap on ERR, if set, is executed before the shell exits. This option appliesto the
shell environment and each subshell environment separately (see COMMAND
EXECUTION ENVIRONMENT above), and may cause subshellsto exit before
executing al the commandsin the subshell.

If acompound command or shell function executes in a context where -eis being

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1)

-h
-k

-m

-n

FreeBSD General Commands Manual BASH(1)

ignored, none of the commands executed within the compound command or function
body will be affected by the -e setting, even if -eis set and a command returns a failure
status. If acompound command or shell function sets -e while executing in a context
where -eisignored, that setting will not have any effect until the compound command or
the command containing the function call compl etes.

Disable pathname expansion.

Remember the location of commands as they are looked up for execution. Thisis
enabled by default.

All argumentsin the form of assignment statements are placed in the environment for a
command, not just those that precede the command name.

Monitor mode. Job control isenabled. This option is on by default for interactive shells
on systems that support it (see JOB CONTROL above). All processes run in a separate
process group. When a background job completes, the shell prints aline containing its
exit status.

Read commands but do not execute them. This may be used to check a shell script for
syntax errors. Thisisignored by interactive shells.

-0 option-name

GNU Bash 5.2

The option-name can be one of the following:

allexport Sameas-a.

braceexpand
Same as -B.

emacs Usean emacs-style command line editing interface. Thisisenabled by default
when the shell isinteractive, unlessthe shell is started with the --noediting
option. Thisaso affects the editing interface used for read -e.

errexit Sameas-e.

errtrace Sameas-E.

functrace Sameas-T.

hashall Sameas-h.

histexpand
Sameas-H.

history Enable command history, as described above under HISTORY. Thisoptionis
on by default in interactive shells.

ignor eeof
The effect isasif the shell command ‘' IGNOREEOF=10"" had been executed
(see Shell Variables above).

keyword Sameas-k.

monitor Sameas-m.

noclobber
Sameas-C.

noexec Sameas-n.

2022 September 19 BASH(1)

BASH(1)

GNU Bash 5.2

FreeBSD General Commands Manual BASH(1)

noglob Sameas-f.

nolog Currently ignored.

notify ~ Sameas-b.

nounset Sameas-u.

onecmd Sameas-t.

physical Same as-P.

pipefail If set, the return value of a pipeline is the value of the last (rightmost)
command to exit with a non-zero status, or zero if all commands in the pipeline
exit successfully. Thisoption is disabled by default.

posix Change the behavior of bash where the default operation differs from the
POSIX standard to match the standard (posix mode). See SEE AL SO below
for areference to adocument that details how posix mode affects bash’s
behavior.

privileged
Same as -p.

verbose Sameas-v.

Vi Use avi-style command line editing interface. This also affects the editing
interface used for read -e.

xtrace Sameas-x.

If -0 is supplied with no option-name, the values of the current options are printed. If +o

is supplied with no option-name, a series of set commands to recreate the current option

settings is displayed on the standard output.

Turn on privileged mode. In this mode, the SENV and $BASH_ENV files are not

processed, shell functions are not inherited from the environment, and the SHELL OPTS,

BASHOPTS, CDPATH, and GL OBIGNORE variables, if they appear in the

environment, areignored. If the shell is started with the effective user (group) id not

equal to the real user (group) id, and the -p option is not supplied, these actions are taken

and the effective user id is set to the real user id. If the-p option issupplied at startup,

the effective user id is not reset. Turning this option off causes the effective user and

group ids to be set to the real user and group ids.

Enable restricted shell mode. This option cannot be unset once it has been set.

Exit after reading and executing one command.

Treat unset variables and parameters other than the special parameters"@" and "*", or

array variables subscripted with"@" or "*", as an error when performing parameter

expansion. If expansion is attempted on an unset variable or parameter, the shell prints

an error message, and, if not interactive, exits with a non-zero status.

Print shell input lines as they are read.

After expanding each simple command, for command, case command, select command,

or arithmetic for command, display the expanded value of PS4, followed by the

command and its expanded arguments or associated word list.

2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

-B The shell performs brace expansion (see Brace Expansion above). Thisison by default.

-C If set, bash does not overwrite an existing file with the >, >& , and <> redirection
operators. This may be overridden when creating output files by using the redirection
operator >| instead of >.

-E If set, any trap on ERR isinherited by shell functions, command substitutions, and
commands executed in a subshell environment. The ERR trap is normally not inherited
in such cases.

-H Enable! style history substitution. This option ison by default when the shell is
interactive.

-P If set, the shell does not resolve symboalic links when executing commands such as cd

that change the current working directory. It usesthe physical directory structure
instead. By default, bash followsthe logical chain of directories when performing
commands which change the current directory.

-T If set, any traps on DEBUG and RETURN are inherited by shell functions, command
substitutions, and commands executed in a subshell environment. The DEBUG and
RETURN traps are normally not inherited in such cases.

-- If no arguments follow this option, then the positional parameters are unset. Otherwise,
the positional parameters are set to the args, even if some of them begin with a-.

- Signal the end of options, cause all remaining args to be assigned to the positional
parameters. The -x and -v options are turned off. If there are no args, the positional
parameters remain unchanged.

The options are off by default unless otherwise noted. Using + rather than - causes these options to
be turned off. The options can a so be specified as arguments to an invocation of the shell. The
current set of options may be found in $-. The return statusis always true unless an invalid option
is encountered.

shift [n]
The positional parameters from n+1 ... are renamed to $1 Parameters represented by the
numbers $# down to $#-n+1 are unset. n must be a non-negative number less than or equal to $#.
If nis0, no parameters are changed. If nisnot given, itisassumedto be 1. If nisgreater than $#,
the positional parameters are not changed. The return statusis greater than zero if nis greater than
$# or less than zero; otherwise 0.

shopt [-pgsu] [-0] [optname ...]
Toggle the values of settings controlling optional shell behavior. The settings can be either those
listed below, or, if the -0 option is used, those available with the -0 option to the set builtin
command. With no options, or with the -p option, alist of all settable optionsis displayed, with an
indication of whether or not each is set; if optnames are supplied, the output is restricted to those
options. The -p option causes output to be displayed in aform that may be reused asinput. Other

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

options have the following meanings:

-s Enable (set) each optname.

-u Disable (unset) each optname.

-q Suppresses hormal output (quiet mode); the return status indicates whether the optname is set
or unset. If multiple optname arguments are given with -q, the return statusis zero if all
optnames are enabl ed; non-zero otherwise.

-0 Restricts the values of optname to be those defined for the -0 option to the set builtin.

If either -s or -u is used with no opthame arguments, shopt shows only those options which are set
or unset, respectively. Unless otherwise noted, the shopt options are disabled (unset) by default.

The return status when listing optionsis zero if all optnames are enabled, non-zero otherwise.
When setting or unsetting options, the return status is zero unless an optname is not a valid shell
option.

Thelist of shopt optionsis:

assoc_expand_once
If set, the shell suppresses multiple evaluation of associative array subscripts during
arithmetic expression evaluation, while executing builtins that can perform variable
assignments, and while executing builtins that perform array dereferencing.

autocd If set, acommand name that is the name of adirectory is executed asiif it were the
argument to the cd command. This option isonly used by interactive shells.

cdable vars
If set, an argument to the cd builtin command that is not a directory is assumed to be the
name of avariable whose value is the directory to change to.

cdspell If set, minor errorsin the spelling of adirectory component in acd command will be
corrected. The errors checked for are transposed characters, a missing character, and one
character too many. If acorrection isfound, the corrected filename is printed, and the
command proceeds. This option isonly used by interactive shells.

checkhash
If set, bash checks that a command found in the hash table exists before trying to execute
it. If ahashed command no longer exists, anormal path search is performed.

checkjobs
If set, bash lists the status of any stopped and running jobs before exiting an interactive
shell. If any jobs are running, this causes the exit to be deferred until a second exit is
attempted without an intervening command (see JOB CONTROL above). The shell
always postpones exiting if any jobs are stopped.

checkwinsize
If set, bash checks the window size after each external (non-builtin) command and, if

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

necessary, updates the values of LINES and COLUMNS. Thisoption is enabled by
default.

cmdhist I set, bash attempts to save al lines of a multiple-line command in the same history
entry. Thisallows easy re-editing of multi-line commands. This option is enabled by
default, but only has an effect if command history is enabled, as described above under
HISTORY.

compat31

compat32

compat40

compat4l

compat42

compat43

compat44

compat50
These control aspects of the shell’s compatibility mode (see SHELL COMPATIBILITY
M ODE below).

complete fullquote
If set, bash quotes all shell metacharactersin filenames and directory names when
performing completion. If not set, bash removes metacharacters such as the dollar sign
from the set of characters that will be quoted in completed filenames when these
metacharacters appear in shell variable references in words to be completed. This means
that dollar signsin variable names that expand to directories will not be quoted;
however, any dollar signs appearing in filenames will not be quoted, either. Thisis
active only when bash is using backsashes to quote completed filenames. Thisvariable
is set by default, which is the default bash behavior in versions through 4.2.

direxpand
If set, bash replaces directory names with the results of word expansion when performing
filename completion. This changes the contents of the readline editing buffer. If not set,
bash attempts to preserve what the user typed.

dirspell If set, bash attempts spelling correction on directory names during word completion if
the directory name initially supplied does not exist.

dotglob If set, bash includes filenames beginning with a*.’ in the results of pathname expansion.
Thefilenames‘*.”” and **..”” must aways be matched explicitly, even if dotglob is set.

execfail If set, anon-interactive shell will not exit if it cannot execute the file specified as an
argument to the exec builtin command. An interactive shell does not exit if exec fails.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

expand_aliases
If set, aliases are expanded as described above under ALIASES. Thisoption isenabled
by default for interactive shells.

extdebug If set at shell invocation, or in ashell startup file, arrange to execute the debugger profile
before the shell starts, identical to the --debugger option. If set after invocation, behavior
intended for use by debuggersis enabled:

1. The-F option to the declare builtin displays the source file name and line number
corresponding to each function name supplied as an argument.

2. If the command run by the DEBUG trap returns a non-zero value, the next command
is skipped and not executed.

3. If the command run by the DEBUG trap returns avalue of 2, and the shell is
executing in asubroutine (a shell function or a shell script executed by the . or
sour ce builting), the shell simulates acall to return.

4. BASH_ARGC and BASH ARGV are updated as described in their descriptions
above).

5. Function tracing is enabled: command substitution, shell functions, and subshells
invoked with (command) inherit the DEBUG and RETURN traps.

6. Error tracing is enabled: command substitution, shell functions, and subshells
invoked with (command) inherit the ERR trap.

extglob If set, the extended pattern matching features described above under Pathname
Expansion are enabled.

extquote If set, $'string’ and $'string" quoting is performed within ${parameter} expansions
enclosed in double quotes. Thisoption is enabled by default.

failglob If set, patterns which fail to match filenames during pathname expansion result in an
expansion error.

force fignore
If set, the suffixes specified by the FI GNORE shell variable cause words to be ignored
when performing word completion even if the ignored words are the only possible
completions. See SHELL VARIABLES above for adescription of FIGNORE. This

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

option is enabled by default.

globasciiranges
If set, range expressions used in pattern matching bracket expressions (see Pattern
Matching above) behave asif in the traditional C locale when performing comparisons.
That is, the current local€' s collating sequence is not taken into account, so b will not
collate between A and B, and upper-case and lower-case ASCII characters will collate
together.

globskipdots
If set, pathname expansion will never match the filenames**.”" and **..”", eveniif the
pattern beginswitha“*.””. Thisoption is enabled by default.

globstar If set, the pattern ** used in a pathname expansion context will match al files and zero
or more directories and subdirectories. If the patternisfollowed by a/, only directories
and subdirectories match.

gnu_errfmt
If set, shell error messages are written in the standard GNU error message format.

histappend
If set, the history list is appended to the file named by the value of the HISTFILE
variable when the shell exits, rather than overwriting the file.

histreedit If set, and readlineis being used, a user is given the opportunity to re-edit afailed history
substitution.

histverify
If set, and readline is being used, the results of history substitution are not immediately
passed to the shell parser. Instead, the resulting line isloaded into the readline editing
buffer, allowing further modification.

hostcomplete
If set, and readlineis being used, bash will attempt to perform hosthame completion
when aword containing a @ is being completed (see Completing under READLINE
above). Thisisenabled by default.

huponexit
If set, bash will send SIGHUP to al jobs when an interactive login shell exits.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1)

FreeBSD General Commands Manual BASH(1)

inherit_errexit

If set, command substitution inherits the value of the errexit option, instead of unsetting
it in the subshell environment. This option is enabled when posix mode is enabled.

interactive_comments

If set, allow aword beginning with # to cause that word and all remaining characters on
that line to beignored in an interactive shell (see COMMENT S above). Thisoption is
enabled by default.

lastpipe If set, and job control is not active, the shell runs the last command of a pipeline not

lithist

executed in the background in the current shell environment.

If set, and the cmdhist option is enabled, multi-line commands are saved to the history
with embedded newlines rather than using semicolon separators where possible.

localvar_inherit

If set, local variables inherit the value and attributes of avariable of the same name that
exists at a previous scope before any new valueis assigned. The nameref attribute is not
inherited.

localvar _unset

If set, calling unset on local variablesin previous function scopes marks them so
subsequent lookups find them unset until that function returns. Thisisidentical to the
behavior of unsetting local variables at the current function scope.

login_shell

The shell setsthisoption if it is started as alogin shell (see INVOCATION above). The
value may not be changed.

mailwarn

If set, and afilethat bash is checking for mail has been accessed since the last time it
was checked, the message ‘* The mail in mailfile has been read’’ is displayed.

no_empty_cmd_completion

If set, and readlineis being used, bash will not attempt to search the PATH for possible
compl etions when completion is attempted on an empty line.

nocaseglob

GNU Bash 5.2

If set, bash matches filenames in a case-insensitive fashion when performing pathname
expansion (see Pathname Expansion above).

2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

nocasematch
If set, bash matches patterns in a case-insensitive fashion when performing matching
while executing case or [[conditional commands, when performing pattern substitution
word expansions, or when filtering possible completions as part of programmable
completion.

noexpand_tranglation
If set, bash encloses the trandated results of $"..." quoting in single quotes instead of
double quotes. If the string is not trandlated, this has no effect.

nullglob If set, bash allows patterns which match no files (see Pathname Expansion above) to
expand to anull string, rather than themselves.

patsub_replacement
If set, bash expands occurrences of & in the replacement string of pattern substitution to
the text matched by the pattern, as described under Parameter Expansion above. This
option is enabled by default.

progcomp
If set, the programmable completion facilities (see Programmable Completion above) are
enabled. Thisoption isenabled by default.

progcomp_alias
If set, and programmable completion is enabled, bash treats a command name that
doesn’'t have any completions as a possible alias and attempts alias expansion. If it has an
alias, bash attempts programmable completion using the command word resulting from
the expanded alias.

promptvars
If set, prompt strings undergo parameter expansion, command substitution, arithmetic
expansion, and quote removal after being expanded as described in PROM PTING above.
This option is enabled by default.

restricted_shell
The shell setsthisoption if it is started in restricted mode (see RESTRICTED SHELL
below). The value may not be changed. Thisis not reset when the startup files are
executed, allowing the startup files to discover whether or not a shell isrestricted.

shift_verbose
If set, the shift builtin prints an error message when the shift count exceeds the number

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

of positional parameters.

sour cepath
If set, the . (source) builtin uses the value of PATH to find the directory containing the
file supplied as an argument. This option is enabled by default.

varredir_close
If set, the shell automatically closes file descriptors assigned using the {varname}
redirection syntax (see REDIRECTION above) instead of leaving them open when the
command completes.

Xpg_echo
If set, the echo builtin expands backslash-escape sequences by default.

suspend [-f]
Suspend the execution of this shell until it receivesa SIGCONT signal. A login shell, or ashell
without job control enabled, cannot be suspended; the -f option can be used to override this and
force the suspension. The return status is O unless the shell isalogin shell or job control is not
enabled and -f is not supplied.

test expr

[expr]
Return astatus of O (true) or 1 (false) depending on the evaluation of the conditional expression
expr. Each operator and operand must be a separate argument. Expressions are composed of the
primaries described above under CONDITIONAL EXPRESSIONS. test does not accept any
options, nor does it accept and ignore an argument of -- as signifying the end of options.

Expressions may be combined using the following operators, listed in decreasing order of
precedence. The evaluation depends on the number of arguments; see below. Operator
precedence is used when there are five or more arguments.
I expr

Trueif expr isfalse.
(‘expr)

Returns the value of expr. This may be used to override the normal precedence of operators.
exprl -a expr2

Trueif both exprl and expr2 are true.
exprl -o expr2

Trueif either exprl or expr2 istrue.

test and [evaluate conditional expressions using a set of rules based on the number of arguments.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

0 arguments
The expression isfalse.

1 argument
The expression istrue if and only if the argument is not null.

2 arguments
If thefirst argument is!, the expression istrueif and only if the second argument is null. If
the first argument is one of the unary conditional operators listed above under
CONDITIONAL EXPRESSIONS, the expression istrueif the unary test istrue. If the first
argument is not avalid unary conditional operator, the expression isfalse.

3 arguments
The following conditions are applied in the order listed. |f the second argument is one of the
binary conditional operators listed above under CONDITIONAL EXPRESSIONS, the result
of the expression is the result of the binary test using the first and third arguments as operands.
The -a and -0 operators are considered binary operators when there are three arguments. If the
first argument is!, the value is the negation of the two-argument test using the second and
third arguments. If the first argument is exactly (and the third argument is exactly), the result
is the one-argument test of the second argument. Otherwise, the expression isfalse.

4 arguments
The following conditions are applied in the order listed. If thefirst argumentis!, theresultis
the negation of the three-argument expression composed of the remaining arguments. the two-
argument test using the second and third arguments. If the first argument is exactly (and the
fourth argument is exactly), the result is the two-argument test of the second and third
arguments. Otherwise, the expression is parsed and evaluated according to precedence using
theruleslisted above.

5 or more arguments
The expression is parsed and evaluated according to precedence using the rules listed above.

When used with test or [, the < and > operators sort lexicographically using ASCII ordering.

times
Print the accumulated user and system times for the shell and for processes run from the shell. The
return statusisO.

trap [-1p] [[arg] sigspec ...]
The command arg is to be read and executed when the shell receives signal(s) sigspec. If argis
absent (and there isa single sigspec) or -, each specified signal is reset to its original disposition
(the value it had upon entrance to the shell). If arg isthe null string the signal specified by each
sigspec isignored by the shell and by the commands it invokes. If argisnot present and -p has
been supplied, then the trap commands associated with each sigspec are displayed. If no
arguments are supplied or if only -p isgiven, trap printsthe list of commands associated with each

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

signal. The -l option causes the shell to print alist of signal names and their corresponding
numbers. Each sigspec is either asignal name defined in <signal .h>, or asignal number. Signal
names are case insensitive and the SI G prefix is optional.

If asigspec isEXIT (0) the command arg is executed on exit from the shell. If asigspecis
DEBUG, the command arg is executed before every simple command, for command, case
command, select command, every arithmetic for command, and before the first command executes
in ashell function (see SHELL GRAMMAR above). Refer to the description of the extdebug
option to the shopt builtin for details of its effect on the DEBUG trap. If asigspecisRETURN,
the command arg is executed each time a shell function or a script executed with the . or source
builtins finishes executing.

If asigspec is ERR, the command arg is executed whenever a pipeline (which may consist of a
single simple command), alist, or a compound command returns a non-zero exit status, subject to
the following conditions. The ERR trap is not executed if the failed command is part of the
command list immediately following awhile or until keyword, part of the test in an if statement,
part of acommand executed ina & & or || list except the command following the final & & or ||, any
command in apipeline but the last, or if the command’ sreturn value is being inverted using !.
These are the same conditions obeyed by the errexit (-€) option.

Signalsignored upon entry to the shell cannot be trapped or reset. Trapped signals that are not
being ignored are reset to their original valuesin a subshell or subshell environment when oneis
created. Thereturn statusisfalseif any sigspec isinvalid; otherwise trap returns true.

type [-aftpP] name [name ...]
With no options, indicate how each name would be interpreted if used as a command name. If the
-t option is used, type prints a string which is one of alias, keyword, function, builtin, or file if
nameis an dias, shell reserved word, function, builtin, or disk file, respectively. If the nameis not
found, then nothing is printed, and an exit status of falseisreturned. If the-p option isused, type
either returns the name of the disk file that would be executed if name were specified asa
command name, or nothing if ‘‘type -t name’” would not return file. The -P option forcesa PATH
search for each name, even if **type -t name’” would not return file. I1f acommand is hashed, -p
and -P print the hashed value, which is not necessarily the file that appearsfirstin PATH. If the-a
option is used, type prints all of the places that contain an executable named name. Thisincludes
aliases and functions, if and only if the -p option is not also used. The table of hashed commands
isnot consulted when using -a. The -f option suppresses shell function lookup, as with the
command builtin. typereturnstrueif al of the arguments are found, false if any are not found.

ulimit [-HS] -a
ulimit [-HS] [-bcdefikimnpgr stuvxPRT [limit]]

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Provides control over the resources available to the shell and to processes started by it, on systems

that allow such control. The -H and -S options specify that the hard or soft limit is set for the given

resource. A hard limit cannot be increased by a non-root user onceit is set; a soft limit may be

increased up to the value of the hard limit. If neither -H nor -Sis specified, both the soft and hard

limits are set. The value of limit can be a number in the unit specified for the resource or one of

the special values hard, soft, or unlimited, which stand for the current hard limit, the current soft

limit, and no limit, respectively. If limit is omitted, the current value of the soft limit of the

resource is printed, unlessthe -H option is given. When more than one resource is specified, the

limit name and unit, if appropriate, are printed before the value. Other options are interpreted as

follows:

-a All current limits are reported; no limits are set

-b The maximum socket buffer size

-c The maximum size of corefiles created

-d The maximum size of a process s data segment

-e The maximum scheduling priority ("nice")

-f The maximum size of files written by the shell and its children

-i The maximum number of pending signals

-k The maximum number of kqueues that may be allocated

-l The maximum size that may be locked into memory

-m The maximum resident set size (many systems do not honor this limit)

-n The maximum number of open file descriptors (most systems do not allow this value to be set)

-p The pipe size in 512-byte blocks (this may not be set)

-g Themaximum number of bytesin POSIX message queues

-r The maximum real-time scheduling priority

-s The maximum stack size

-t The maximum amount of cpu time in seconds

-u The maximum number of processes available to asingle user

-v The maximum amount of virtual memory available to the shell and, on some systems, to its
children

-X The maximum number of file locks

-P The maximum number of pseudoterminals

-R The maximum time a real -time process can run before blocking, in microseconds

-T The maximum number of threads

If limit is given, and the -a option is not used, limit is the new value of the specified resource. If

no option is given, then -f isassumed. Values are in 1024-byte increments, except for -t, whichis
in seconds; -R, which isin microseconds; -p, which isin units of 512-byte blocks; -P, -T, -b, -k, -n,
and -u, which are unscaled values; and, when in posix mode, -c and -f, which are in 512-byte
increments. The return statusis 0 unless an invalid option or argument is supplied, or an error
occurs while setting a new limit.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

umask [-p] [-S] [mode]
The user file-creation mask is set to mode. |If mode begins with a digit, it isinterpreted as an octal
number; otherwise it is interpreted as a symbolic mode mask similar to that accepted by chmod(1).
If mode is omitted, the current value of the mask is printed. The -S option causes the mask to be
printed in symbolic form; the default output is an octal number. If the -p option is supplied, and
mode is omitted, the output isin aform that may be reused asinput. The return statusis O if the
mode was successfully changed or if no mode argument was supplied, and fal se otherwise.

unalias[-a] [name...]
Remove each name from the list of defined aliases. If -aissupplied, all alias definitions are
removed. The return valueistrue unless a supplied nameis not a defined alias.

unset [-fv] [-n] [name ...]
For each name, remove the corresponding variable or function. If the-v option is given, each
name refers to a shell variable, and that variable is removed. Read-only variables may not be
unset. If -f is specified, each name refersto a shell function, and the function definition is
removed. If the-n option issupplied, and name is a variable with the nameref attribute, name will
be unset rather than the variable it references. -n has no effect if the -f option is supplied. If no
options are supplied, each name refersto avariable; if thereis no variable by that name, afunction
with that name, if any, isunset. Each unset variable or function is removed from the environment
passed to subsequent commands. If any of BASH_ALIASES, BASH_ARGVO0, BASH_CMDS,
BASH_COMMAND, BASH_SUBSHELL, BASHPID, COMP_WORDBREAKS, DIRSTACK,
EPOCHREALTIME, EPOCHSECONDS, FUNCNAME, GROUPS, HISTCMD, LINENO,
RANDOM, SECONDS, or SRANDOM are unset, they lose their special properties, even if they
are subsequently reset. The exit status istrue unless a nameis readonly or may not be unset.

wait [-fn] [-p varnamg] [id ...]
Wait for each specified child process and return its termination status. Each id may be a process
ID or ajob specification; if ajob spec isgiven, all processesin that job’s pipeline are waited for.
If id is not given, wait waits for all running background jobs and the last-executed process
substitution, if its processid is the same as $!, and the return statusiis zero. If the-n optionis
supplied, wait waits for asingle job from thelist of ids or, if no ids are supplied, any job, to
complete and returns its exit status. If none of the supplied argumentsis a child of the shell, or if
no arguments are supplied and the shell has no unwaited-for children, the exit statusis 127. If the
-p option is supplied, the process or job identifier of the job for which the exit statusisreturned is
assigned to the variable varname named by the option argument. The variable will be unset
initialy, before any assignment. Thisis useful only when the -n option is supplied. Supplying the
-f option, when job control is enabled, forces wait to wait for id to terminate before returning its
status, instead of returning when it changes status. |If id specifies a non-existent process or job, the
return statusis 127. If wait isinterrupted by asignal, the return status will be greater than 128, as

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

described under SIGNAL S above. Otherwise, the return status is the exit status of the last process
or job waited for.

SHELL COMPATIBILITY MODE
Bash-4.0 introduced the concept of ashell compatibility level, specified as a set of options to the shopt
builtin (compat31, compat32, compat40, compat41, and so on). Thereisonly one current
compatibility level -- each option is mutually exclusive. The compatibility level isintended to allow
users to select behavior from previous versions that isincompatible with newer versions while they
migrate scripts to use current features and behavior. It’ s intended to be a temporary solution.

This section does not mention behavior that is standard for a particular version (e.g., setting compat32
means that quoting the rhs of the regexp matching operator quotes special regexp charactersin the
word, which is default behavior in bash-3.2 and subsequent versions).

If auser enables, say, compat32, it may affect the behavior of other compatibility levels up to and
including the current compatibility level. Theideaisthat each compatibility level controls behavior
that changed in that version of bash, but that behavior may have been present in earlier versions. For
instance, the change to use locale-based comparisons with the [[command came in bash-4.1, and
earlier versions used ASClI-based comparisons, so enabling compat32 will enable ASCII-based
comparisons aswell. That granularity may not be sufficient for all uses, and as a result users should
employ compatibility levels carefully. Read the documentation for a particular feature to find out the
current behavior.

Bash-4.3 introduced a new shell variable: BASH_COMPAT. The vaue assigned to this variable (a
decimal version number like 4.2, or an integer corresponding to the compatNN option, like 42)
determines the compatibility level.

Starting with bash-4.4, Bash has begun deprecating older compatibility levels. Eventually, the options
will be removed in favor of BASH _COMPAT.

Bash-5.0 isthe final version for which there will be an individual shopt option for the previous version.
Users should use BASH _COMPAT on bash-5.0 and later versions.

The following table describes the behavior changes controlled by each compatibility level setting. The
compatNN tag is used as shorthand for setting the compatibility level to NN using one of the following
mechanisms. For versions prior to bash-5.0, the compatibility level may be set using the corresponding
compatNN shopt option. For bash-4.3 and later versions, the BASH _COMPAT variable is preferred,
and it isrequired for bash-5.1 and later versions.

compat31

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

® quoting the rhs of the [[command’ s regexp matching operator (=~) has no special effect

compat32
© interrupting acommand list suchas"a; b ; ¢" causes the execution of the next command in the
list (in bash-4.0 and later versions, the shell actsas if it received the interrupt, so interrupting
one command in alist aborts the execution of the entire list)

compat40
© the < and > operatorsto the [[command do not consider the current locale when comparing
strings; they use ASCII ordering. Bash versions prior to bash-4.1 use ASCI|I collation and
stremp(3); bash-4.1 and later use the current local€' s collation sequence and strcoll(3).

compat4l
© inposix mode, time may be followed by options and still be recognized as a reserved word
(thisis POSIX interpretation 267)
® inposix mode, the parser requires that an even number of single quotes occur in the word
portion of a double-quoted parameter expansion and treats them specially, so that characters
within the single quotes are considered quoted (this is POSI X interpretation 221)

compat42
© thereplacement string in double-quoted pattern substitution does not undergo quote removal,
asit doesin versions after bash-4.2
® inposix mode, single quotes are considered special when expanding the word portion of a
double-quoted parameter expansion and can be used to quote a closing brace or other special
character (thisis part of POSIX interpretation 221); in later versions, single quotes are not
specia within double-quoted word expansions

compat43

© the shell does not print awarning message if an attempt is made to use a quoted compound
assignment as an argument to declare (e.g., declare -afoo="(1 2)’). Later versions warn that
this usage is deprecated

® word expansion errors are considered non-fatal errors that cause the current command to fail,
even in posix mode (the default behavior isto make them fatal errorsthat cause the shell to
exit)

® when executing a shell function, the loop state (while/until/etc.) isnot reset, so break or
continue in that function will break or continue loops in the calling context. Bash-4.4 and later
reset the loop state to prevent this

compat44
® the shell sets up the values used by BASH_ARGYV and BASH_ARGC so they can expand to

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1)

FreeBSD General Commands Manual BASH(1)

the shell’ s positional parameters even if extended debugging mode is not enabled

© asubshell inherits loops from its parent context, so break or continue will cause the subshell to
exit. Bash-5.0 and later reset the loop state to prevent the exit
© variable assignments preceding builtins like export and readonly that set attributes continue to
affect variables with the same name in the calling environment even if the shell is not in posix
mode
compat50

® Bash-5.1 changed the way $SRANDOM is generated to introduce slightly more randomness. If

the shell compatibility level is set to 50 or lower, it reverts to the method from bash-5.0 and
previous versions, so seeding the random number generator by assigning avalueto RANDOM
will produce the same sequence as in bash-5.0

® If the command hash table is empty, bash versions prior to bash-5.1 printed an informational
message to that effect, even when producing output that can be reused as input. Bash-5.1
suppresses that message when the -l option is supplied.
compat51

© Theunset builtin treats attempts to unset array subscripts @ and * differently depending on

whether the array isindexed or associative, and differently than in previous versions.

RESTRICTED SHELL
If bash is started with the name rbash, or the -r option is supplied at invocation, the shell becomes
restricted. A restricted shell is used to set up an environment more controlled than the standard shell.
It behaves identically to bash with the exception that the following are disallowed or not performed:

® changing directories with cd

® setting or unsetting the valuesof SHELL, PATH, HISTFILE, ENV, or BASH_ENV

® specifying command names containing /

® specifying afilename containing a/ as an argument to the . builtin command

® specifying afilename containing a slash as an argument to the history builtin command

® specifying afilename containing a slash as an argument to the -p option to the hash builtin
command

® importing function definitions from the shell environment at startup

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

® parsing the value of SHEL L OPTS from the shell environment at startup

® redirecting output using the >, >|, <>, >&, &>, and >> redirection operators

® using the exec builtin command to replace the shell with another command

® adding or deleting builtin commands with the -f and -d options to the enable builtin command
® using the enable builtin command to enable disabled shell builtins

® specifying the -p option to the command builtin command

® turning off restricted mode with set +r or shopt -u restricted_shell.

These restrictions are enforced after any startup files are read.

When a command that is found to be a shell script is executed (see COMMAND EXECUTION above),
rbash turns off any restrictions in the shell spawned to execute the script.

SEE ALSO

Bash Reference Manual, Brian Fox and Chet Ramey

The Gnu Readline Library, Brian Fox and Chet Ramey

The Gnu History Library, Brian Fox and Chet Ramey

Portable Operating System Interface (POS X) Part 2: Shell and Utilities, |IEEE --
http://pubs.opengroup.org/onlinepubs/9699919799/

http://tiswww.case.edu/~chet/bash/POSI X -- a description of posix mode

sh(1), ksh(1), csh(1)

emacs(1), vi(1)

readline(3)

FILES

{usr/local/bin/bash

The bash executable
{usr/local/etc/profile

The systemwide initialization file, executed for login shells
~/.bash_profile

The persond initialization file, executed for login shells
~/.bashrc

Theindividual per-interactive-shell startup file
~/.bash_logout

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Theindividual login shell cleanup file, executed when alogin shell exits
~/.bash_history

The default value of HISTFILE, the file in which bash saves the command history
~/.inputrc

Individual readline initialization file

AUTHORS
Brian Fox, Free Software Foundation
bfox@gnu.org

Chet Ramey, Case Western Reserve University
chet.ramey@case.edu

BUG REPORTS
If you find abug in bash, you should report it. But first, you should make surethat it really is abug,
and that it appearsin the latest version of bash. The latest version is always available from
ftp://ftp.gnu.org/pub/gnu/bash/ and http://git.savannah.gnu.or g/cgit/bash.git/snapshot/bash-
master .tar.gz.

Once you have determined that a bug actually exists, use the bashbug command to submit a bug report.
If you have afix, you are encouraged to mail that aswell! Suggestions and ‘ philosophical’ bug reports
may be mailed to bug-bash@gnu.org or posted to the Usenet newsgroup gnu.bash.bug.

ALL bug reports should include:

The version number of bash

The hardware and operating system

The compiler used to compile

A description of the bug behaviour

A short script or ‘recipe’ which exercises the bug

bashbug inserts the first three items automatically into the template it provides for filing a bug report.

Comments and bug reports concerning this manual page should be directed to chet.ramey@case.edu.

BUGS
It'stoo big and too slow.

There are some subtle differences between bash and traditional versions of sh, mostly because of the
POSI X specification.

GNU Bash 5.2 2022 September 19 BASH(1)

BASH(1) FreeBSD General Commands Manual BASH(1)

Aliases are confusing in some uses.

Shell builtin commands and functions are not stoppable/restartable.

Compound commands and command sequences of theform ‘a; b ; ¢’ are not handled gracefully when
process suspension is attempted. When a process is stopped, the shell immediately executes the next
command in the sequence. It suffices to place the sequence of commands between parentheses to force
it into a subshell, which may be stopped as a unit.

Array variables may not (yet) be exported.

There may be only one active coprocess at atime.

GNU Bash 5.2 2022 September 19 BASH(1)

