
NAME
bc - arbitrary-precision decimal arithmetic language and calculator

SYNOPSIS
bc [-cCghilPqRsvVw] [--digit-clamp] [--no-digit-clamp] [--global-stacks] [--help] [--interactive]

[--mathlib] [--no-prompt] [--no-read-prompt] [--quiet] [--standard] [--warn] [--version] [-e expr]

[--expression=expr...] [-f file...] [--file=file...] [file...] [-I ibase] [--ibase=ibase] [-O obase]

[--obase=obase] [-S scale] [--scale=scale] [-E seed] [--seed=seed]

DESCRIPTION
bc(1) is an interactive processor for a language first standardized in 1991 by POSIX. (See the

STANDARDS section.) The language provides unlimited precision decimal arithmetic and is

somewhat C-like, but there are differences. Such differences will be noted in this document.

After parsing and handling options, this bc(1) reads any files given on the command line and executes

them before reading from stdin.

This bc(1) is a drop-in replacement for any bc(1), including (and especially) the GNU bc(1). It also has

many extensions and extra features beyond other implementations.

Note: If running this bc(1) on any script meant for another bc(1) gives a parse error, it is probably

because a word this bc(1) reserves as a keyword is used as the name of a function, variable, or array.

To fix that, use the command-line option -r keyword, where keyword is the keyword that is used as a

name in the script. For more information, see the OPTIONS section.

If parsing scripts meant for other bc(1) implementations still does not work, that is a bug and should be

reported. See the BUGS section.

OPTIONS
The following are the options that bc(1) accepts.

-C, --no-digit-clamp
Disables clamping of digits greater than or equal to the current ibase when parsing numbers.

This means that the value added to a number from a digit is always that digit’s value multiplied by

the value of ibase raised to the power of the digit’s position, which starts from 0 at the least

significant digit.

If this and/or the -c or --digit-clamp options are given multiple times, the last one given is used.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



This option overrides the BC_DIGIT_CLAMP environment variable (see the ENVIRONMENT
VARIABLES section) and the default, which can be queried with the -h or --help options.

This is a non-portable extension.

-c, --digit-clamp
Enables clamping of digits greater than or equal to the current ibase when parsing numbers.

This means that digits that the value added to a number from a digit that is greater than or equal to

the ibase is the value of ibase minus 1 all multiplied by the value of ibase raised to the power of the

digit’s position, which starts from 0 at the least significant digit.

If this and/or the -C or --no-digit-clamp options are given multiple times, the last one given is used.

This option overrides the BC_DIGIT_CLAMP environment variable (see the ENVIRONMENT
VARIABLES section) and the default, which can be queried with the -h or --help options.

This is a non-portable extension.

-E seed, --seed=seed

Sets the builtin variable seed to the value seed assuming that seed is in base 10. It is a fatal error if

seed is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-e expr, --expression=expr

Evaluates expr. If multiple expressions are given, they are evaluated in order. If files are given as

well (see the -f and --file options), the expressions and files are evaluated in the order given. This

means that if a file is given before an expression, the file is read in and evaluated first.

If this option is given on the command-line (i.e., not in BC_ENV_ARGS, see the

ENVIRONMENT VARIABLES section), then after processing all expressions and files, bc(1) will

exit, unless - (stdin) was given as an argument at least once to -f or --file, whether on the

command-line or in BC_ENV_ARGS. However, if any other -e, --expression, -f, or --file
arguments are given after -f- or equivalent is given, bc(1) will give a fatal error and exit.

This is a non-portable extension.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



-f file, --file=file

Reads in file and evaluates it, line by line, as though it were read through stdin. If expressions are

also given (see the -e and --expression options), the expressions are evaluated in the order given.

If this option is given on the command-line (i.e., not in BC_ENV_ARGS, see the

ENVIRONMENT VARIABLES section), then after processing all expressions and files, bc(1) will

exit, unless - (stdin) was given as an argument at least once to -f or --file. However, if any other

-e, --expression, -f, or --file arguments are given after -f- or equivalent is given, bc(1) will give a

fatal error and exit.

This is a non-portable extension.

-g, --global-stacks
Turns the globals ibase, obase, scale, and seed into stacks.

This has the effect that a copy of the current value of all four are pushed onto a stack for every

function call, as well as popped when every function returns. This means that functions can assign

to any and all of those globals without worrying that the change will affect other functions. Thus,

a hypothetical function named output(x,b) that simply printed x in base b could be written like this:

define void output(x, b) {

obase=b

x

}

instead of like this:

define void output(x, b) {

auto c

c=obase

obase=b

x

obase=c

}

This makes writing functions much easier.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



(Note: the function output(x,b) exists in the extended math library. See the LIBRARY section.)

However, since using this flag means that functions cannot set ibase, obase, scale, or seed globally,

functions that are made to do so cannot work anymore. There are two possible use cases for that,

and each has a solution.

First, if a function is called on startup to turn bc(1) into a number converter, it is possible to replace

that capability with various shell aliases. Examples:

alias d2o="bc -e ibase=A -e obase=8"

alias h2b="bc -e ibase=G -e obase=2"

Second, if the purpose of a function is to set ibase, obase, scale, or seed globally for any other

purpose, it could be split into one to four functions (based on how many globals it sets) and each of

those functions could return the desired value for a global.

For functions that set seed, the value assigned to seed is not propagated to parent functions. This

means that the sequence of pseudo-random numbers that they see will not be the same sequence of

pseudo-random numbers that any parent sees. This is only the case once seed has been set.

If a function desires to not affect the sequence of pseudo-random numbers of its parents, but wants

to use the same seed, it can use the following line:

seed = seed

If the behavior of this option is desired for every run of bc(1), then users could make sure to define

BC_ENV_ARGS and include this option (see the ENVIRONMENT VARIABLES section for

more details).

If -s, -w, or any equivalents are used, this option is ignored.

This is a non-portable extension.

-h, --help
Prints a usage message and exits.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



-I ibase, --ibase=ibase

Sets the builtin variable ibase to the value ibase assuming that ibase is in base 10. It is a fatal error

if ibase is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-i, --interactive
Forces interactive mode. (See the INTERACTIVE MODE section.)

This is a non-portable extension.

-L, --no-line-length
Disables line length checking and prints numbers without backslashes and newlines. In other

words, this option sets BC_LINE_LENGTH to 0 (see the ENVIRONMENT VARIABLES
section).

This is a non-portable extension.

-l, --mathlib
Sets scale (see the SYNTAX section) to 20 and loads the included math library and the extended

math library before running any code, including any expressions or files specified on the command

line.

To learn what is in the libraries, see the LIBRARY section.

-O obase, --obase=obase

Sets the builtin variable obase to the value obase assuming that obase is in base 10. It is a fatal

error if obase is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-P, --no-prompt
Disables the prompt in TTY mode. (The prompt is only enabled in TTY mode. See the TTY
MODE section.) This is mostly for those users that do not want a prompt or are not used to having

them in bc(1). Most of those users would want to put this option in BC_ENV_ARGS (see the

ENVIRONMENT VARIABLES section).

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



These options override the BC_PROMPT and BC_TTY_MODE environment variables (see the

ENVIRONMENT VARIABLES section).

This is a non-portable extension.

-q, --quiet
This option is for compatibility with the GNU bc(1) (https://www.gnu.org/software/bc/); it is a no-

op. Without this option, GNU bc(1) prints a copyright header. This bc(1) only prints the copyright

header if one or more of the -v, -V, or --version options are given unless the BC_BANNER
environment variable is set and contains a non-zero integer or if this bc(1) was built with the

header displayed by default. If any of that is the case, then this option does prevent bc(1) from

printing the header.

This is a non-portable extension.

-R, --no-read-prompt
Disables the read prompt in TTY mode. (The read prompt is only enabled in TTY mode. See the

TTY MODE section.) This is mostly for those users that do not want a read prompt or are not used

to having them in bc(1). Most of those users would want to put this option in BC_ENV_ARGS
(see the ENVIRONMENT VARIABLES section). This option is also useful in hash bang lines of

bc(1) scripts that prompt for user input.

This option does not disable the regular prompt because the read prompt is only used when the

read() built-in function is called.

These options do override the BC_PROMPT and BC_TTY_MODE environment variables (see the

ENVIRONMENT VARIABLES section), but only for the read prompt.

This is a non-portable extension.

-r keyword, --redefine=keyword

Redefines keyword in order to allow it to be used as a function, variable, or array name. This is

useful when this bc(1) gives parse errors when parsing scripts meant for other bc(1)

implementations.

The keywords this bc(1) allows to be redefined are:

+o abs

+o asciify

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



+o continue

+o divmod

+o else

+o halt

+o irand

+o last

+o limits

+o maxibase

+o maxobase

+o maxrand

+o maxscale

+o modexp

+o print

+o rand

+o read

+o seed

+o stream

If any of those keywords are used as a function, variable, or array name in a script, use this option

with the keyword as the argument. If multiple are used, use this option for all of them; it can be

used multiple times.

Keywords are not redefined when parsing the builtin math library (see the LIBRARY section).

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



It is a fatal error to redefine keywords mandated by the POSIX standard (see the STANDARDS
section). It is a fatal error to attempt to redefine words that this bc(1) does not reserve as

keywords.

-S scale, --scale=scale

Sets the builtin variable scale to the value scale assuming that scale is in base 10. It is a fatal error

if scale is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-s, --standard
Process exactly the language defined by the standard (see the STANDARDS section) and error if

any extensions are used.

This is a non-portable extension.

-v, -V, --version
Print the version information (copyright header) and exits.

This is a non-portable extension.

-w, --warn
Like -s and --standard, except that warnings (and not errors) are printed for non-standard

extensions and execution continues normally.

This is a non-portable extension.

-z, --leading-zeroes
Makes bc(1) print all numbers greater than -1 and less than 1, and not equal to 0, with a leading

zero.

This can be set for individual numbers with the plz(x), plznl(x), pnlz(x), and pnlznl(x) functions in

the extended math library (see the LIBRARY section).

This is a non-portable extension.

All long options are non-portable extensions.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



STDIN
If no files or expressions are given by the -f, --file, -e, or --expression options, then bc(1) reads from

stdin.

However, there are a few caveats to this.

First, stdin is evaluated a line at a time. The only exception to this is if the parse cannot complete.

That means that starting a string without ending it or starting a function, if statement, or loop without

ending it will also cause bc(1) to not execute.

Second, after an if statement, bc(1) doesn’t know if an else statement will follow, so it will not execute

until it knows there will not be an else statement.

STDOUT
Any non-error output is written to stdout. In addition, if history (see the HISTORY section) and the

prompt (see the TTY MODE section) are enabled, both are output to stdout.

Note: Unlike other bc(1) implementations, this bc(1) will issue a fatal error (see the EXIT STATUS
section) if it cannot write to stdout, so if stdout is closed, as in bc >&-, it will quit with an error. This is

done so that bc(1) can report problems when stdout is redirected to a file.

If there are scripts that depend on the behavior of other bc(1) implementations, it is recommended that

those scripts be changed to redirect stdout to /dev/null.

STDERR
Any error output is written to stderr.

Note: Unlike other bc(1) implementations, this bc(1) will issue a fatal error (see the EXIT STATUS
section) if it cannot write to stderr, so if stderr is closed, as in bc 2>&-, it will quit with an error. This

is done so that bc(1) can exit with an error code when stderr is redirected to a file.

If there are scripts that depend on the behavior of other bc(1) implementations, it is recommended that

those scripts be changed to redirect stderr to /dev/null.

SYNTAX
The syntax for bc(1) programs is mostly C-like, with some differences. This bc(1) follows the POSIX

standard (see the STANDARDS section), which is a much more thorough resource for the language

this bc(1) accepts. This section is meant to be a summary and a listing of all the extensions to the

standard.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



In the sections below, E means expression, S means statement, and I means identifier.

Identifiers (I) start with a lowercase letter and can be followed by any number (up to

BC_NAME_MAX-1) of lowercase letters (a-z), digits (0-9), and underscores (_). The regex is [a-z][a-
z0-9_]*. Identifiers with more than one character (letter) are a non-portable extension.

ibase is a global variable determining how to interpret constant numbers. It is the "input" base, or the

number base used for interpreting input numbers. ibase is initially 10. If the -s (--standard) and -w
(--warn) flags were not given on the command line, the max allowable value for ibase is 36.

Otherwise, it is 16. The min allowable value for ibase is 2. The max allowable value for ibase can be

queried in bc(1) programs with the maxibase() built-in function.

obase is a global variable determining how to output results. It is the "output" base, or the number base

used for outputting numbers. obase is initially 10. The max allowable value for obase is

BC_BASE_MAX and can be queried in bc(1) programs with the maxobase() built-in function. The

min allowable value for obase is 0. If obase is 0, values are output in scientific notation, and if obase is

1, values are output in engineering notation. Otherwise, values are output in the specified base.

Outputting in scientific and engineering notations are non-portable extensions.

The scale of an expression is the number of digits in the result of the expression right of the decimal

point, and scale is a global variable that sets the precision of any operations, with exceptions. scale is

initially 0. scale cannot be negative. The max allowable value for scale is BC_SCALE_MAX and can

be queried in bc(1) programs with the maxscale() built-in function.

bc(1) has both global variables and local variables. All local variables are local to the function; they

are parameters or are introduced in the auto list of a function (see the FUNCTIONS section). If a

variable is accessed which is not a parameter or in the auto list, it is assumed to be global. If a parent

function has a local variable version of a variable that a child function considers global, the value of

that global variable in the child function is the value of the variable in the parent function, not the value

of the actual global variable.

All of the above applies to arrays as well.

The value of a statement that is an expression (i.e., any of the named expressions or operands) is

printed unless the lowest precedence operator is an assignment operator and the expression is

notsurrounded by parentheses.

The value that is printed is also assigned to the special variable last. A single dot (.) may also be used

as a synonym for last. These are non-portable extensions.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



Either semicolons or newlines may separate statements.

Comments
There are two kinds of comments:

1. Block comments are enclosed in /* and */.

2. Line comments go from # until, and not including, the next newline. This is a non-portable
extension.

Named Expressions
The following are named expressions in bc(1):

1. Variables: I

2. Array Elements: I[E]

3. ibase

4. obase

5. scale

6. seed

7. last or a single dot (.)

Numbers 6 and 7 are non-portable extensions.

The meaning of seed is dependent on the current pseudo-random number generator but is guaranteed to

not change except for new major versions.

The scale and sign of the value may be significant.

If a previously used seed value is assigned to seed and used again, the pseudo-random number

generator is guaranteed to produce the same sequence of pseudo-random numbers as it did when the

seed value was previously used.

The exact value assigned to seed is not guaranteed to be returned if seed is queried again immediately.

However, if seed does return a different value, both values, when assigned to seed, are guaranteed to

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



produce the same sequence of pseudo-random numbers. This means that certain values assigned to

seed will not produce unique sequences of pseudo-random numbers. The value of seed will change

after any use of the rand() and irand(E) operands (see the Operands subsection below), except if the

parameter passed to irand(E) is 0, 1, or negative.

There is no limit to the length (number of significant decimal digits) or scale of the value that can be

assigned to seed.

Variables and arrays do not interfere; users can have arrays named the same as variables. This also

applies to functions (see the FUNCTIONS section), so a user can have a variable, array, and function

that all have the same name, and they will not shadow each other, whether inside of functions or not.

Named expressions are required as the operand of increment/decrement operators and as the left side of

assignment operators (see the Operators subsection).

Operands
The following are valid operands in bc(1):

1. Numbers (see the Numbers subsection below).

2. Array indices (I[E]).

3. (E): The value of E (used to change precedence).

4. sqrt(E): The square root of E. E must be non-negative.

5. length(E): The number of significant decimal digits in E. Returns 1 for 0 with no decimal places.

If given a string, the length of the string is returned. Passing a string to length(E) is a non-portable
extension.

6. length(I[]): The number of elements in the array I. This is a non-portable extension.

7. scale(E): The scale of E.

8. abs(E): The absolute value of E. This is a non-portable extension.

9. is_number(E): 1 if the given argument is a number, 0 if it is a string. This is a non-portable
extension.

10. is_string(E): 1 if the given argument is a string, 0 if it is a number. This is a non-portable

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



extension.

11. modexp(E, E, E): Modular exponentiation, where the first expression is the base, the second is the

exponent, and the third is the modulus. All three values must be integers. The second argument

must be non-negative. The third argument must be non-zero. This is a non-portable extension.

12. divmod(E, E, I[]): Division and modulus in one operation. This is for optimization. The first

expression is the dividend, and the second is the divisor, which must be non-zero. The return

value is the quotient, and the modulus is stored in index 0 of the provided array (the last

argument). This is a non-portable extension.

13. asciify(E): If E is a string, returns a string that is the first letter of its argument. If it is a number,

calculates the number mod 256 and returns that number as a one-character string. This is a non-
portable extension.

14. asciify(I[]): A string that is made up of the characters that would result from running asciify(E) on

each element of the array identified by the argument. This allows creating multi-character strings

and storing them. This is a non-portable extension.

15. I(), I(E), I(E, E), and so on, where I is an identifier for a non-void function (see the Void

Functions subsection of the FUNCTIONS section). The E argument(s) may also be arrays of the

form I[], which will automatically be turned into array references (see the Array References

subsection of the FUNCTIONS section) if the corresponding parameter in the function definition

is an array reference.

16. read(): Reads a line from stdin and uses that as an expression. The result of that expression is the

result of the read() operand. This is a non-portable extension.

17. maxibase(): The max allowable ibase. This is a non-portable extension.

18. maxobase(): The max allowable obase. This is a non-portable extension.

19. maxscale(): The max allowable scale. This is a non-portable extension.

20. line_length(): The line length set with BC_LINE_LENGTH (see the ENVIRONMENT
VARIABLES section). This is a non-portable extension.

21. global_stacks(): 0 if global stacks are not enabled with the -g or --global-stacks options, non-zero

otherwise. See the OPTIONS section. This is a non-portable extension.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



22. leading_zero(): 0 if leading zeroes are not enabled with the -z or -leading-zeroes options, non-zero

otherwise. See the OPTIONS section. This is a non-portable extension.

23. rand(): A pseudo-random integer between 0 (inclusive) and BC_RAND_MAX (inclusive). Using

this operand will change the value of seed. This is a non-portable extension.

24. irand(E): A pseudo-random integer between 0 (inclusive) and the value of E (exclusive). If E is

negative or is a non-integer (E’s scale is not 0), an error is raised, and bc(1) resets (see the RESET
section) while seed remains unchanged. If E is larger than BC_RAND_MAX, the higher bound is

honored by generating several pseudo-random integers, multiplying them by appropriate powers

of BC_RAND_MAX+1, and adding them together. Thus, the size of integer that can be generated

with this operand is unbounded. Using this operand will change the value of seed, unless the

value of E is 0 or 1. In that case, 0 is returned, and seed is not changed. This is a non-portable
extension.

25. maxrand(): The max integer returned by rand(). This is a non-portable extension.

The integers generated by rand() and irand(E) are guaranteed to be as unbiased as possible, subject to

the limitations of the pseudo-random number generator.

Note: The values returned by the pseudo-random number generator with rand() and irand(E) are

guaranteed to NOT be cryptographically secure. This is a consequence of using a seeded pseudo-

random number generator. However, they are guaranteed to be reproducible with identical seed values.

This means that the pseudo-random values from bc(1) should only be used where a reproducible stream

of pseudo-random numbers is ESSENTIAL. In any other case, use a non-seeded pseudo-random

number generator.

Numbers
Numbers are strings made up of digits, uppercase letters, and at most 1 period for a radix. Numbers

can have up to BC_NUM_MAX digits. Uppercase letters are equal to 9 plus their position in the

alphabet, starting from 1 (i.e., A equals 10, or 9+1).

If a digit or letter makes no sense with the current value of ibase (i.e., they are greater than or equal to

the current value of ibase), then the behavior depends on the existence of the -c/--digit-clamp or

-C/--no-digit-clamp options (see the OPTIONS section), the existence and setting of the

BC_DIGIT_CLAMP environment variable (see the ENVIRONMENT VARIABLES section), or the

default, which can be queried with the -h/--help option.

If clamping is off, then digits or letters that are greater than or equal to the current value of ibase are

not changed. Instead, their given value is multiplied by the appropriate power of ibase and added into

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



the number. This means that, with an ibase of 3, the number AB is equal to 3^1*A+3^0*B, which is 3
times 10 plus 11, or 41.

If clamping is on, then digits or letters that are greater than or equal to the current value of ibase are set

to the value of the highest valid digit in ibase before being multiplied by the appropriate power of ibase
and added into the number. This means that, with an ibase of 3, the number AB is equal to

3^1*2+3^0*2, which is 3 times 2 plus 2, or 8.

There is one exception to clamping: single-character numbers (i.e., A alone). Such numbers are never

clamped and always take the value they would have in the highest possible ibase. This means that A
alone always equals decimal 10 and Z alone always equals decimal 35. This behavior is mandated by

the standard (see the STANDARDS section) and is meant to provide an easy way to set the current

ibase (with the i command) regardless of the current value of ibase.

If clamping is on, and the clamped value of a character is needed, use a leading zero, i.e., for A, use

0A.

In addition, bc(1) accepts numbers in scientific notation. These have the form <number>e<integer>.

The exponent (the portion after the e) must be an integer. An example is 1.89237e9, which is equal to

1892370000. Negative exponents are also allowed, so 4.2890e-3 is equal to 0.0042890.

Using scientific notation is an error or warning if the -s or -w, respectively, command-line options (or

equivalents) are given.

WARNING: Both the number and the exponent in scientific notation are interpreted according to the

current ibase, but the number is still multiplied by 10^exponent regardless of the current ibase. For

example, if ibase is 16 and bc(1) is given the number string FFeA, the resulting decimal number will be

2550000000000, and if bc(1) is given the number string 10e-4, the resulting decimal number will be

0.0016.

Accepting input as scientific notation is a non-portable extension.

Operators
The following arithmetic and logical operators can be used. They are listed in order of decreasing

precedence. Operators in the same group have the same precedence.

++ --
Type: Prefix and Postfix

Associativity: None

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



Description: increment, decrement

- ! Type: Prefix

Associativity: None

Description: negation, boolean not

$ Type: Postfix

Associativity: None

Description: truncation

@ Type: Binary

Associativity: Right

Description: set precision

^ Type: Binary

Associativity: Right

Description: power

* / %
Type: Binary

Associativity: Left

Description: multiply, divide, modulus

+ - Type: Binary

Associativity: Left

Description: add, subtract

<< >>

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



Type: Binary

Associativity: Left

Description: shift left, shift right

= <<= >>= += -= *= /= %= ^= @=
Type: Binary

Associativity: Right

Description: assignment

== <= >= != < >
Type: Binary

Associativity: Left

Description: relational

&&
Type: Binary

Associativity: Left

Description: boolean and

|| Type: Binary

Associativity: Left

Description: boolean or

The operators will be described in more detail below.

++ --
The prefix and postfix increment and decrement operators behave exactly like they would in C.

They require a named expression (see the Named Expressions subsection) as an operand.

The prefix versions of these operators are more efficient; use them where possible.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



- The negation operator returns 0 if a user attempts to negate any expression with the value 0.

Otherwise, a copy of the expression with its sign flipped is returned.

! The boolean not operator returns 1 if the expression is 0, or 0 otherwise.

This is a non-portable extension.

$ The truncation operator returns a copy of the given expression with all of its scale removed.

This is a non-portable extension.

@ The set precision operator takes two expressions and returns a copy of the first with its scale equal

to the value of the second expression. That could either mean that the number is returned without

change (if the scale of the first expression matches the value of the second expression), extended

(if it is less), or truncated (if it is more).

The second expression must be an integer (no scale) and non-negative.

This is a non-portable extension.

^ The power operator (not the exclusive or operator, as it would be in C) takes two expressions and

raises the first to the power of the value of the second. The scale of the result is equal to scale.

The second expression must be an integer (no scale), and if it is negative, the first value must be

non-zero.

* The multiply operator takes two expressions, multiplies them, and returns the product. If a is the

scale of the first expression and b is the scale of the second expression, the scale of the result is

equal to min(a+b,max(scale,a,b)) where min() and max() return the obvious values.

/ The divide operator takes two expressions, divides them, and returns the quotient. The scale of the

result shall be the value of scale.

The second expression must be non-zero.

% The modulus operator takes two expressions, a and b, and evaluates them by 1) Computing a/b to

current scale and 2) Using the result of step 1 to calculate a-(a/b)*b to scale

max(scale+scale(b),scale(a)).

The second expression must be non-zero.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



+ The add operator takes two expressions, a and b, and returns the sum, with a scale equal to the max

of the scales of a and b.

- The subtract operator takes two expressions, a and b, and returns the difference, with a scale equal

to the max of the scales of a and b.

<< The left shift operator takes two expressions, a and b, and returns a copy of the value of a with its

decimal point moved b places to the right.

The second expression must be an integer (no scale) and non-negative.

This is a non-portable extension.

>> The right shift operator takes two expressions, a and b, and returns a copy of the value of a with its

decimal point moved b places to the left.

The second expression must be an integer (no scale) and non-negative.

This is a non-portable extension.

= <<= >>= += -= *= /= %= ^= @=
The assignment operators take two expressions, a and b where a is a named expression (see the

Named Expressions subsection).

For =, b is copied and the result is assigned to a. For all others, a and b are applied as operands to

the corresponding arithmetic operator and the result is assigned to a.

The assignment operators that correspond to operators that are extensions are themselves non-
portable extensions.

== <= >= != < >
The relational operators compare two expressions, a and b, and if the relation holds, according to C

language semantics, the result is 1. Otherwise, it is 0.

Note that unlike in C, these operators have a lower precedence than the assignment operators,

which means that a=b>c is interpreted as (a=b)>c.

Also, unlike the standard (see the STANDARDS section) requires, these operators can appear

anywhere any other expressions can be used. This allowance is a non-portable extension.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



&&
The boolean and operator takes two expressions and returns 1 if both expressions are non-zero, 0
otherwise.

This is not a short-circuit operator.

This is a non-portable extension.

|| The boolean or operator takes two expressions and returns 1 if one of the expressions is non-zero,

0 otherwise.

This is not a short-circuit operator.

This is a non-portable extension.

Statements
The following items are statements:

1. E

2. { S ; ... ; S }

3. if ( E ) S

4. if ( E ) S else S

5. while ( E ) S

6. for ( E ; E ; E ) S

7. An empty statement

8. break

9. continue

10. quit

11. halt

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



12. limits

13. A string of characters, enclosed in double quotes

14. print E , ... , E

15. stream E , ... , E

16. I(), I(E), I(E, E), and so on, where I is an identifier for a void function (see the Void Functions

subsection of the FUNCTIONS section). The E argument(s) may also be arrays of the form I[],
which will automatically be turned into array references (see the Array References subsection of

the FUNCTIONS section) if the corresponding parameter in the function definition is an array

reference.

Numbers 4, 9, 11, 12, 14, 15, and 16 are non-portable extensions.

Also, as a non-portable extension, any or all of the expressions in the header of a for loop may be

omitted. If the condition (second expression) is omitted, it is assumed to be a constant 1.

The break statement causes a loop to stop iterating and resume execution immediately following a

loop. This is only allowed in loops.

The continue statement causes a loop iteration to stop early and returns to the start of the loop,

including testing the loop condition. This is only allowed in loops.

The if else statement does the same thing as in C.

The quit statement causes bc(1) to quit, even if it is on a branch that will not be executed (it is a

compile-time command).

Warning: The behavior of this bc(1) on quit is slightly different from other bc(1) implementations.

Other bc(1) implementations will exit as soon as they finish parsing the line that a quit command is on.

This bc(1) will execute any completed and executable statements that occur before the quit statement

before exiting.

In other words, for the bc(1) code below:

for (i = 0; i < 3; ++i) i; quit

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



Other bc(1) implementations will print nothing, and this bc(1) will print 0, 1, and 2 on successive lines

before exiting.

The halt statement causes bc(1) to quit, if it is executed. (Unlike quit if it is on a branch of an if
statement that is not executed, bc(1) does not quit.)

The limits statement prints the limits that this bc(1) is subject to. This is like the quit statement in that

it is a compile-time command.

An expression by itself is evaluated and printed, followed by a newline.

Both scientific notation and engineering notation are available for printing the results of expressions.

Scientific notation is activated by assigning 0 to obase, and engineering notation is activated by

assigning 1 to obase. To deactivate them, just assign a different value to obase.

Scientific notation and engineering notation are disabled if bc(1) is run with either the -s or -w
command-line options (or equivalents).

Printing numbers in scientific notation and/or engineering notation is a non-portable extension.

Strings
If strings appear as a statement by themselves, they are printed without a trailing newline.

In addition to appearing as a lone statement by themselves, strings can be assigned to variables and

array elements. They can also be passed to functions in variable parameters.

If any statement that expects a string is given a variable that had a string assigned to it, the statement

acts as though it had received a string.

If any math operation is attempted on a string or a variable or array element that has been assigned a

string, an error is raised, and bc(1) resets (see the RESET section).

Assigning strings to variables and array elements and passing them to functions are non-portable
extensions.

Print Statement
The "expressions" in a print statement may also be strings. If they are, there are backslash escape

sequences that are interpreted specially. What those sequences are, and what they cause to be printed,

are shown below:

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



\a: \a

\b: \b

\\: \

\e: \

\f: \f

\n: \n

\q: "

\r: \r

\t: \t

Any other character following a backslash causes the backslash and character to be printed as-is.

Any non-string expression in a print statement shall be assigned to last, like any other expression that is

printed.

Stream Statement
The "expressions in a stream statement may also be strings.

If a stream statement is given a string, it prints the string as though the string had appeared as its own

statement. In other words, the stream statement prints strings normally, without a newline.

If a stream statement is given a number, a copy of it is truncated and its absolute value is calculated.

The result is then printed as though obase is 256 and each digit is interpreted as an 8-bit ASCII

character, making it a byte stream.

Order of Evaluation
All expressions in a statment are evaluated left to right, except as necessary to maintain order of

operations. This means, for example, assuming that i is equal to 0, in the expression

a[i++] = i++

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



the first (or 0th) element of a is set to 1, and i is equal to 2 at the end of the expression.

This includes function arguments. Thus, assuming i is equal to 0, this means that in the expression

x(i++, i++)

the first argument passed to x() is 0, and the second argument is 1, while i is equal to 2 before the

function starts executing.

FUNCTIONS
Function definitions are as follows:

define I(I,...,I){

auto I,...,I

S;...;S

return(E)

}

Any I in the parameter list or auto list may be replaced with I[] to make a parameter or auto var an

array, and any I in the parameter list may be replaced with *I[] to make a parameter an array reference.

Callers of functions that take array references should not put an asterisk in the call; they must be called

with just I[] like normal array parameters and will be automatically converted into references.

As a non-portable extension, the opening brace of a define statement may appear on the next line.

As a non-portable extension, the return statement may also be in one of the following forms:

1. return

2. return ( )

3. return E

The first two, or not specifying a return statement, is equivalent to return (0), unless the function is a

void function (see the Void Functions subsection below).

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



Void Functions
Functions can also be void functions, defined as follows:

define void I(I,...,I){

auto I,...,I

S;...;S

return

}

They can only be used as standalone expressions, where such an expression would be printed alone,

except in a print statement.

Void functions can only use the first two return statements listed above. They can also omit the return

statement entirely.

The word "void" is not treated as a keyword; it is still possible to have variables, arrays, and functions

named void. The word "void" is only treated specially right after the define keyword.

This is a non-portable extension.

Array References
For any array in the parameter list, if the array is declared in the form

*I[]

it is a reference. Any changes to the array in the function are reflected, when the function returns, to

the array that was passed in.

Other than this, all function arguments are passed by value.

This is a non-portable extension.

LIBRARY
All of the functions below, including the functions in the extended math library (see the Extended

Library subsection below), are available when the -l or --mathlib command-line flags are given, except

that the extended math library is not available when the -s option, the -w option, or equivalents are

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



given.

Standard Library
The standard (see the STANDARDS section) defines the following functions for the math library:

s(x)
Returns the sine of x, which is assumed to be in radians.

This is a transcendental function (see the Transcendental Functions subsection below).

c(x)
Returns the cosine of x, which is assumed to be in radians.

This is a transcendental function (see the Transcendental Functions subsection below).

a(x)
Returns the arctangent of x, in radians.

This is a transcendental function (see the Transcendental Functions subsection below).

l(x) Returns the natural logarithm of x.

This is a transcendental function (see the Transcendental Functions subsection below).

e(x)
Returns the mathematical constant e raised to the power of x.

This is a transcendental function (see the Transcendental Functions subsection below).

j(x, n)
Returns the bessel integer order n (truncated) of x.

This is a transcendental function (see the Transcendental Functions subsection below).

Extended Library
The extended library is not loaded when the -s/--standard or -w/--warn options are given since they are

not part of the library defined by the standard (see the STANDARDS section).

The extended library is a non-portable extension.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



p(x, y)
Calculates x to the power of y, even if y is not an integer, and returns the result to the current scale.

It is an error if y is negative and x is 0.

This is a transcendental function (see the Transcendental Functions subsection below).

r(x, p)
Returns x rounded to p decimal places according to the rounding mode round half away from 0
(https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero).

ceil(x, p)
Returns x rounded to p decimal places according to the rounding mode round away from 0
(https://en.wikipedia.org/wiki/Rounding#Rounding_away_from_zero).

f(x) Returns the factorial of the truncated absolute value of x.

perm(n, k)
Returns the permutation of the truncated absolute value of n of the truncated absolute value of k, if

k <= n. If not, it returns 0.

comb(n, k)
Returns the combination of the truncated absolute value of n of the truncated absolute value of k, if

k <= n. If not, it returns 0.

l2(x)
Returns the logarithm base 2 of x.

This is a transcendental function (see the Transcendental Functions subsection below).

l10(x)
Returns the logarithm base 10 of x.

This is a transcendental function (see the Transcendental Functions subsection below).

log(x, b)
Returns the logarithm base b of x.

This is a transcendental function (see the Transcendental Functions subsection below).

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



cbrt(x)
Returns the cube root of x.

root(x, n)
Calculates the truncated value of n, r, and returns the rth root of x to the current scale.

If r is 0 or negative, this raises an error and causes bc(1) to reset (see the RESET section). It also

raises an error and causes bc(1) to reset if r is even and x is negative.

gcd(a, b)
Returns the greatest common divisor (factor) of the truncated absolute value of a and the truncated

absolute value of b.

lcm(a, b)
Returns the least common multiple of the truncated absolute value of a and the truncated absolute

value of b.

pi(p)
Returns pi to p decimal places.

This is a transcendental function (see the Transcendental Functions subsection below).

t(x) Returns the tangent of x, which is assumed to be in radians.

This is a transcendental function (see the Transcendental Functions subsection below).

a2(y, x)
Returns the arctangent of y/x, in radians. If both y and x are equal to 0, it raises an error and

causes bc(1) to reset (see the RESET section). Otherwise, if x is greater than 0, it returns a(y/x). If

x is less than 0, and y is greater than or equal to 0, it returns a(y/x)+pi. If x is less than 0, and y is

less than 0, it returns a(y/x)-pi. If x is equal to 0, and y is greater than 0, it returns pi/2. If x is

equal to 0, and y is less than 0, it returns -pi/2.

This function is the same as the atan2() function in many programming languages.

This is a transcendental function (see the Transcendental Functions subsection below).

sin(x)
Returns the sine of x, which is assumed to be in radians.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



This is an alias of s(x).

This is a transcendental function (see the Transcendental Functions subsection below).

cos(x)
Returns the cosine of x, which is assumed to be in radians.

This is an alias of c(x).

This is a transcendental function (see the Transcendental Functions subsection below).

tan(x)
Returns the tangent of x, which is assumed to be in radians.

If x is equal to 1 or -1, this raises an error and causes bc(1) to reset (see the RESET section).

This is an alias of t(x).

This is a transcendental function (see the Transcendental Functions subsection below).

atan(x)
Returns the arctangent of x, in radians.

This is an alias of a(x).

This is a transcendental function (see the Transcendental Functions subsection below).

atan2(y, x)
Returns the arctangent of y/x, in radians. If both y and x are equal to 0, it raises an error and

causes bc(1) to reset (see the RESET section). Otherwise, if x is greater than 0, it returns a(y/x). If

x is less than 0, and y is greater than or equal to 0, it returns a(y/x)+pi. If x is less than 0, and y is

less than 0, it returns a(y/x)-pi. If x is equal to 0, and y is greater than 0, it returns pi/2. If x is

equal to 0, and y is less than 0, it returns -pi/2.

This function is the same as the atan2() function in many programming languages.

This is an alias of a2(y, x).

This is a transcendental function (see the Transcendental Functions subsection below).

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



r2d(x)
Converts x from radians to degrees and returns the result.

This is a transcendental function (see the Transcendental Functions subsection below).

d2r(x)
Converts x from degrees to radians and returns the result.

This is a transcendental function (see the Transcendental Functions subsection below).

frand(p)
Generates a pseudo-random number between 0 (inclusive) and 1 (exclusive) with the number of

decimal digits after the decimal point equal to the truncated absolute value of p. If p is not 0, then

calling this function will change the value of seed. If p is 0, then 0 is returned, and seed is not

changed.

ifrand(i, p)
Generates a pseudo-random number that is between 0 (inclusive) and the truncated absolute value

of i (exclusive) with the number of decimal digits after the decimal point equal to the truncated

absolute value of p. If the absolute value of i is greater than or equal to 2, and p is not 0, then

calling this function will change the value of seed; otherwise, 0 is returned and seed is not

changed.

srand(x)
Returns x with its sign flipped with probability 0.5. In other words, it randomizes the sign of x.

brand()
Returns a random boolean value (either 0 or 1).

band(a, b)
Takes the truncated absolute value of both a and b and calculates and returns the result of the

bitwise and operation between them.

If you want to use signed two’s complement arguments, use s2u(x) to convert.

bor(a, b)
Takes the truncated absolute value of both a and b and calculates and returns the result of the

bitwise or operation between them.

If you want to use signed two’s complement arguments, use s2u(x) to convert.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



bxor(a, b)
Takes the truncated absolute value of both a and b and calculates and returns the result of the

bitwise xor operation between them.

If you want to use signed two’s complement arguments, use s2u(x) to convert.

bshl(a, b)
Takes the truncated absolute value of both a and b and calculates and returns the result of a bit-

shifted left by b places.

If you want to use signed two’s complement arguments, use s2u(x) to convert.

bshr(a, b)
Takes the truncated absolute value of both a and b and calculates and returns the truncated result of

a bit-shifted right by b places.

If you want to use signed two’s complement arguments, use s2u(x) to convert.

bnotn(x, n)
Takes the truncated absolute value of x and does a bitwise not as though it has the same number of

bytes as the truncated absolute value of n.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bnot8(x)
Does a bitwise not of the truncated absolute value of x as though it has 8 binary digits (1 unsigned

byte).

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bnot16(x)
Does a bitwise not of the truncated absolute value of x as though it has 16 binary digits (2 unsigned

bytes).

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bnot32(x)
Does a bitwise not of the truncated absolute value of x as though it has 32 binary digits (4 unsigned

bytes).

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



If you want to a use signed two’s complement argument, use s2u(x) to convert.

bnot64(x)
Does a bitwise not of the truncated absolute value of x as though it has 64 binary digits (8 unsigned

bytes).

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bnot(x)
Does a bitwise not of the truncated absolute value of x as though it has the minimum number of

power of two unsigned bytes.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brevn(x, n)
Runs a bit reversal on the truncated absolute value of x as though it has the same number of 8-bit

bytes as the truncated absolute value of n.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brev8(x)
Runs a bit reversal on the truncated absolute value of x as though it has 8 binary digits (1 unsigned

byte).

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brev16(x)
Runs a bit reversal on the truncated absolute value of x as though it has 16 binary digits (2

unsigned bytes).

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brev32(x)
Runs a bit reversal on the truncated absolute value of x as though it has 32 binary digits (4

unsigned bytes).

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brev64(x)
Runs a bit reversal on the truncated absolute value of x as though it has 64 binary digits (8

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



unsigned bytes).

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brev(x)
Runs a bit reversal on the truncated absolute value of x as though it has the minimum number of

power of two unsigned bytes.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

broln(x, p, n)
Does a left bitwise rotatation of the truncated absolute value of x, as though it has the same number

of unsigned 8-bit bytes as the truncated absolute value of n, by the number of places equal to the

truncated absolute value of p modded by the 2 to the power of the number of binary digits in n
8-bit bytes.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brol8(x, p)
Does a left bitwise rotatation of the truncated absolute value of x, as though it has 8 binary digits (1
unsigned byte), by the number of places equal to the truncated absolute value of p modded by 2 to

the power of 8.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brol16(x, p)
Does a left bitwise rotatation of the truncated absolute value of x, as though it has 16 binary digits

(2 unsigned bytes), by the number of places equal to the truncated absolute value of p modded by 2
to the power of 16.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brol32(x, p)
Does a left bitwise rotatation of the truncated absolute value of x, as though it has 32 binary digits

(2 unsigned bytes), by the number of places equal to the truncated absolute value of p modded by 2
to the power of 32.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brol64(x, p)

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



Does a left bitwise rotatation of the truncated absolute value of x, as though it has 64 binary digits

(2 unsigned bytes), by the number of places equal to the truncated absolute value of p modded by 2
to the power of 64.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brol(x, p)
Does a left bitwise rotatation of the truncated absolute value of x, as though it has the minimum

number of power of two unsigned 8-bit bytes, by the number of places equal to the truncated

absolute value of p modded by 2 to the power of the number of binary digits in the minimum

number of 8-bit bytes.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

brorn(x, p, n)
Does a right bitwise rotatation of the truncated absolute value of x, as though it has the same

number of unsigned 8-bit bytes as the truncated absolute value of n, by the number of places equal

to the truncated absolute value of p modded by the 2 to the power of the number of binary digits in

n 8-bit bytes.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bror8(x, p)
Does a right bitwise rotatation of the truncated absolute value of x, as though it has 8 binary digits

(1 unsigned byte), by the number of places equal to the truncated absolute value of p modded by 2
to the power of 8.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bror16(x, p)
Does a right bitwise rotatation of the truncated absolute value of x, as though it has 16 binary digits

(2 unsigned bytes), by the number of places equal to the truncated absolute value of p modded by 2
to the power of 16.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bror32(x, p)
Does a right bitwise rotatation of the truncated absolute value of x, as though it has 32 binary digits

(2 unsigned bytes), by the number of places equal to the truncated absolute value of p modded by 2
to the power of 32.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



If you want to a use signed two’s complement argument, use s2u(x) to convert.

bror64(x, p)
Does a right bitwise rotatation of the truncated absolute value of x, as though it has 64 binary digits

(2 unsigned bytes), by the number of places equal to the truncated absolute value of p modded by 2
to the power of 64.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bror(x, p)
Does a right bitwise rotatation of the truncated absolute value of x, as though it has the minimum

number of power of two unsigned 8-bit bytes, by the number of places equal to the truncated

absolute value of p modded by 2 to the power of the number of binary digits in the minimum

number of 8-bit bytes.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bmodn(x, n)
Returns the modulus of the truncated absolute value of x by 2 to the power of the multiplication of

the truncated absolute value of n and 8.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bmod8(x, n)
Returns the modulus of the truncated absolute value of x by 2 to the power of 8.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bmod16(x, n)
Returns the modulus of the truncated absolute value of x by 2 to the power of 16.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bmod32(x, n)
Returns the modulus of the truncated absolute value of x by 2 to the power of 32.

If you want to a use signed two’s complement argument, use s2u(x) to convert.

bmod64(x, n)
Returns the modulus of the truncated absolute value of x by 2 to the power of 64.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



If you want to a use signed two’s complement argument, use s2u(x) to convert.

bunrev(t)
Assumes t is a bitwise-reversed number with an extra set bit one place more significant than the

real most significant bit (which was the least significant bit in the original number). This number

is reversed and returned without the extra set bit.

This function is used to implement other bitwise functions; it is not meant to be used by users, but

it can be.

plz(x)
If x is not equal to 0 and greater that -1 and less than 1, it is printed with a leading zero, regardless

of the use of the -z option (see the OPTIONS section) and without a trailing newline.

Otherwise, x is printed normally, without a trailing newline.

plznl(x)
If x is not equal to 0 and greater that -1 and less than 1, it is printed with a leading zero, regardless

of the use of the -z option (see the OPTIONS section) and with a trailing newline.

Otherwise, x is printed normally, with a trailing newline.

pnlz(x)
If x is not equal to 0 and greater that -1 and less than 1, it is printed without a leading zero,

regardless of the use of the -z option (see the OPTIONS section) and without a trailing newline.

Otherwise, x is printed normally, without a trailing newline.

pnlznl(x)
If x is not equal to 0 and greater that -1 and less than 1, it is printed without a leading zero,

regardless of the use of the -z option (see the OPTIONS section) and with a trailing newline.

Otherwise, x is printed normally, with a trailing newline.

ubytes(x)
Returns the numbers of unsigned integer bytes required to hold the truncated absolute value of x.

sbytes(x)
Returns the numbers of signed, two’s-complement integer bytes required to hold the truncated

value of x.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



s2u(x)
Returns x if it is non-negative. If it is negative, then it calculates what x would be as a 2’s-

complement signed integer and returns the non-negative integer that would have the same

representation in binary.

s2un(x,n)
Returns x if it is non-negative. If it is negative, then it calculates what x would be as a 2’s-

complement signed integer with n bytes and returns the non-negative integer that would have the

same representation in binary. If x cannot fit into n 2’s-complement signed bytes, it is truncated to

fit.

hex(x)
Outputs the hexadecimal (base 16) representation of x.

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

binary(x)
Outputs the binary (base 2) representation of x.

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

output(x, b)
Outputs the base b representation of x.

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

uint(x)
Outputs the representation, in binary and hexadecimal, of x as an unsigned integer in as few power

of two bytes as possible. Both outputs are split into bytes separated by spaces.

If x is not an integer or is negative, an error message is printed instead, but bc(1) is not reset (see

the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

int(x)
Outputs the representation, in binary and hexadecimal, of x as a signed, two’s-complement integer

in as few power of two bytes as possible. Both outputs are split into bytes separated by spaces.

If x is not an integer, an error message is printed instead, but bc(1) is not reset (see the RESET

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

uintn(x, n)
Outputs the representation, in binary and hexadecimal, of x as an unsigned integer in n bytes. Both

outputs are split into bytes separated by spaces.

If x is not an integer, is negative, or cannot fit into n bytes, an error message is printed instead, but

bc(1) is not reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

intn(x, n)
Outputs the representation, in binary and hexadecimal, of x as a signed, two’s-complement integer

in n bytes. Both outputs are split into bytes separated by spaces.

If x is not an integer or cannot fit into n bytes, an error message is printed instead, but bc(1) is not

reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

uint8(x)
Outputs the representation, in binary and hexadecimal, of x as an unsigned integer in 1 byte. Both

outputs are split into bytes separated by spaces.

If x is not an integer, is negative, or cannot fit into 1 byte, an error message is printed instead, but

bc(1) is not reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

int8(x)
Outputs the representation, in binary and hexadecimal, of x as a signed, two’s-complement integer

in 1 byte. Both outputs are split into bytes separated by spaces.

If x is not an integer or cannot fit into 1 byte, an error message is printed instead, but bc(1) is not

reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



uint16(x)
Outputs the representation, in binary and hexadecimal, of x as an unsigned integer in 2 bytes. Both

outputs are split into bytes separated by spaces.

If x is not an integer, is negative, or cannot fit into 2 bytes, an error message is printed instead, but

bc(1) is not reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

int16(x)
Outputs the representation, in binary and hexadecimal, of x as a signed, two’s-complement integer

in 2 bytes. Both outputs are split into bytes separated by spaces.

If x is not an integer or cannot fit into 2 bytes, an error message is printed instead, but bc(1) is not

reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

uint32(x)
Outputs the representation, in binary and hexadecimal, of x as an unsigned integer in 4 bytes. Both

outputs are split into bytes separated by spaces.

If x is not an integer, is negative, or cannot fit into 4 bytes, an error message is printed instead, but

bc(1) is not reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

int32(x)
Outputs the representation, in binary and hexadecimal, of x as a signed, two’s-complement integer

in 4 bytes. Both outputs are split into bytes separated by spaces.

If x is not an integer or cannot fit into 4 bytes, an error message is printed instead, but bc(1) is not

reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

uint64(x)
Outputs the representation, in binary and hexadecimal, of x as an unsigned integer in 8 bytes. Both

outputs are split into bytes separated by spaces.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



If x is not an integer, is negative, or cannot fit into 8 bytes, an error message is printed instead, but

bc(1) is not reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

int64(x)
Outputs the representation, in binary and hexadecimal, of x as a signed, two’s-complement integer

in 8 bytes. Both outputs are split into bytes separated by spaces.

If x is not an integer or cannot fit into 8 bytes, an error message is printed instead, but bc(1) is not

reset (see the RESET section).

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

hex_uint(x, n)
Outputs the representation of the truncated absolute value of x as an unsigned integer in

hexadecimal using n bytes. Not all of the value will be output if n is too small.

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

binary_uint(x, n)
Outputs the representation of the truncated absolute value of x as an unsigned integer in binary

using n bytes. Not all of the value will be output if n is too small.

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

output_uint(x, n)
Outputs the representation of the truncated absolute value of x as an unsigned integer in the current

obase (see the SYNTAX section) using n bytes. Not all of the value will be output if n is too

small.

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

output_byte(x, i)
Outputs byte i of the truncated absolute value of x, where 0 is the least significant byte and

number_of_bytes - 1 is the most significant byte.

This is a void function (see the Void Functions subsection of the FUNCTIONS section).

Transcendental Functions

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



All transcendental functions can return slightly inaccurate results, up to 1 ULP

(https://en.wikipedia.org/wiki/Unit_in_the_last_place). This is unavoidable, and the article at

https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT explains why it is impossible and

unnecessary to calculate exact results for the transcendental functions.

Because of the possible inaccuracy, I recommend that users call those functions with the precision

(scale) set to at least 1 higher than is necessary. If exact results are absolutely required, users can

double the precision (scale) and then truncate.

The transcendental functions in the standard math library are:

+o s(x)

+o c(x)

+o a(x)

+o l(x)

+o e(x)

+o j(x, n)

The transcendental functions in the extended math library are:

+o l2(x)

+o l10(x)

+o log(x, b)

+o pi(p)

+o t(x)

+o a2(y, x)

+o sin(x)

+o cos(x)

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



+o tan(x)

+o atan(x)

+o atan2(y, x)

+o r2d(x)

+o d2r(x)

RESET
When bc(1) encounters an error or a signal that it has a non-default handler for, it resets. This means

that several things happen.

First, any functions that are executing are stopped and popped off the stack. The behavior is not unlike

that of exceptions in programming languages. Then the execution point is set so that any code waiting

to execute (after all functions returned) is skipped.

Thus, when bc(1) resets, it skips any remaining code waiting to be executed. Then, if it is interactive

mode, and the error was not a fatal error (see the EXIT STATUS section), it asks for more input;

otherwise, it exits with the appropriate return code.

Note that this reset behavior is different from the GNU bc(1), which attempts to start executing the

statement right after the one that caused an error.

PERFORMANCE
Most bc(1) implementations use char types to calculate the value of 1 decimal digit at a time, but that

can be slow. This bc(1) does something different.

It uses large integers to calculate more than 1 decimal digit at a time. If built in a environment where

BC_LONG_BIT (see the LIMITS section) is 64, then each integer has 9 decimal digits. If built in an

environment where BC_LONG_BIT is 32 then each integer has 4 decimal digits. This value (the

number of decimal digits per large integer) is called BC_BASE_DIGS.

The actual values of BC_LONG_BIT and BC_BASE_DIGS can be queried with the limits statement.

In addition, this bc(1) uses an even larger integer for overflow checking. This integer type depends on

the value of BC_LONG_BIT, but is always at least twice as large as the integer type used to store

digits.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



LIMITS
The following are the limits on bc(1):

BC_LONG_BIT
The number of bits in the long type in the environment where bc(1) was built. This determines

how many decimal digits can be stored in a single large integer (see the PERFORMANCE
section).

BC_BASE_DIGS
The number of decimal digits per large integer (see the PERFORMANCE section). Depends on

BC_LONG_BIT.

BC_BASE_POW
The max decimal number that each large integer can store (see BC_BASE_DIGS) plus 1. Depends

on BC_BASE_DIGS.

BC_OVERFLOW_MAX
The max number that the overflow type (see the PERFORMANCE section) can hold. Depends on

BC_LONG_BIT.

BC_BASE_MAX
The maximum output base. Set at BC_BASE_POW.

BC_DIM_MAX
The maximum size of arrays. Set at SIZE_MAX-1.

BC_SCALE_MAX
The maximum scale. Set at BC_OVERFLOW_MAX-1.

BC_STRING_MAX
The maximum length of strings. Set at BC_OVERFLOW_MAX-1.

BC_NAME_MAX
The maximum length of identifiers. Set at BC_OVERFLOW_MAX-1.

BC_NUM_MAX
The maximum length of a number (in decimal digits), which includes digits after the decimal

point. Set at BC_OVERFLOW_MAX-1.

BC_RAND_MAX

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



The maximum integer (inclusive) returned by the rand() operand. Set at 2^BC_LONG_BIT-1.

Exponent

The maximum allowable exponent (positive or negative). Set at BC_OVERFLOW_MAX.

Number of vars

The maximum number of vars/arrays. Set at SIZE_MAX-1.

The actual values can be queried with the limits statement.

These limits are meant to be effectively non-existent; the limits are so large (at least on 64-bit

machines) that there should not be any point at which they become a problem. In fact, memory should

be exhausted before these limits should be hit.

ENVIRONMENT VARIABLES
As non-portable extensions, bc(1) recognizes the following environment variables:

POSIXLY_CORRECT
If this variable exists (no matter the contents), bc(1) behaves as if the -s option was given.

BC_ENV_ARGS
This is another way to give command-line arguments to bc(1). They should be in the same format

as all other command-line arguments. These are always processed first, so any files given in

BC_ENV_ARGS will be processed before arguments and files given on the command-line. This

gives the user the ability to set up "standard" options and files to be used at every invocation. The

most useful thing for such files to contain would be useful functions that the user might want every

time bc(1) runs.

The code that parses BC_ENV_ARGS will correctly handle quoted arguments, but it does not

understand escape sequences. For example, the string "/home/gavin/some bc file.bc" will be

correctly parsed, but the string "/home/gavin/some "bc" file.bc" will include the backslashes.

The quote parsing will handle either kind of quotes, ’ or ". Thus, if you have a file with any

number of single quotes in the name, you can use double quotes as the outside quotes, as in "some
‘bc’ file.bc", and vice versa if you have a file with double quotes. However, handling a file with

both kinds of quotes in BC_ENV_ARGS is not supported due to the complexity of the parsing,

though such files are still supported on the command-line where the parsing is done by the shell.

BC_LINE_LENGTH
If this environment variable exists and contains an integer that is greater than 1 and is less than

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



UINT16_MAX (2^16-1), bc(1) will output lines to that length, including the backslash (\). The

default line length is 70.

The special value of 0 will disable line length checking and print numbers without regard to line

length and without backslashes and newlines.

BC_BANNER
If this environment variable exists and contains an integer, then a non-zero value activates the

copyright banner when bc(1) is in interactive mode, while zero deactivates it.

If bc(1) is not in interactive mode (see the INTERACTIVE MODE section), then this environment

variable has no effect because bc(1) does not print the banner when not in interactive mode.

This environment variable overrides the default, which can be queried with the -h or --help
options.

BC_SIGINT_RESET
If bc(1) is not in interactive mode (see the INTERACTIVE MODE section), then this environment

variable has no effect because bc(1) exits on SIGINT when not in interactive mode.

However, when bc(1) is in interactive mode, then if this environment variable exists and contains

an integer, a non-zero value makes bc(1) reset on SIGINT, rather than exit, and zero makes bc(1)

exit. If this environment variable exists and is not an integer, then bc(1) will exit on SIGINT.

This environment variable overrides the default, which can be queried with the -h or --help
options.

BC_TTY_MODE
If TTY mode is not available (see the TTY MODE section), then this environment variable has no

effect.

However, when TTY mode is available, then if this environment variable exists and contains an

integer, then a non-zero value makes bc(1) use TTY mode, and zero makes bc(1) not use TTY

mode.

This environment variable overrides the default, which can be queried with the -h or --help
options.

BC_PROMPT
If TTY mode is not available (see the TTY MODE section), then this environment variable has no

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



effect.

However, when TTY mode is available, then if this environment variable exists and contains an

integer, a non-zero value makes bc(1) use a prompt, and zero or a non-integer makes bc(1) not use

a prompt. If this environment variable does not exist and BC_TTY_MODE does, then the value of

the BC_TTY_MODE environment variable is used.

This environment variable and the BC_TTY_MODE environment variable override the default,

which can be queried with the -h or --help options.

BC_EXPR_EXIT
If any expressions or expression files are given on the command-line with -e, --expression, -f, or

--file, then if this environment variable exists and contains an integer, a non-zero value makes

bc(1) exit after executing the expressions and expression files, and a zero value makes bc(1) not

exit.

This environment variable overrides the default, which can be queried with the -h or --help
options.

BC_DIGIT_CLAMP
When parsing numbers and if this environment variable exists and contains an integer, a non-zero

value makes bc(1) clamp digits that are greater than or equal to the current ibase so that all such

digits are considered equal to the ibase minus 1, and a zero value disables such clamping so that

those digits are always equal to their value, which is multiplied by the power of the ibase.

This never applies to single-digit numbers, as per the standard (see the STANDARDS section).

This environment variable overrides the default, which can be queried with the -h or --help
options.

EXIT STATUS
bc(1) returns the following exit statuses:

0 No error.

1 A math error occurred. This follows standard practice of using 1 for expected errors, since math

errors will happen in the process of normal execution.

Math errors include divide by 0, taking the square root of a negative number, using a negative

number as a bound for the pseudo-random number generator, attempting to convert a negative

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



number to a hardware integer, overflow when converting a number to a hardware integer, overflow

when calculating the size of a number, and attempting to use a non-integer where an integer is

required.

Converting to a hardware integer happens for the second operand of the power (^), places (@), left

shift (<<), and right shift (>>) operators and their corresponding assignment operators.

2 A parse error occurred.

Parse errors include unexpected EOF, using an invalid character, failing to find the end of a string

or comment, using a token where it is invalid, giving an invalid expression, giving an invalid print

statement, giving an invalid function definition, attempting to assign to an expression that is not a

named expression (see the Named Expressions subsection of the SYNTAX section), giving an

invalid auto list, having a duplicate auto/function parameter, failing to find the end of a code block,

attempting to return a value from a void function, attempting to use a variable as a reference, and

using any extensions when the option -s or any equivalents were given.

3 A runtime error occurred.

Runtime errors include assigning an invalid number to any global (ibase, obase, or scale), giving a

bad expression to a read() call, calling read() inside of a read() call, type errors, passing the wrong

number of arguments to functions, attempting to call an undefined function, and attempting to use

a void function call as a value in an expression.

4 A fatal error occurred.

Fatal errors include memory allocation errors, I/O errors, failing to open files, attempting to use

files that do not have only ASCII characters (bc(1) only accepts ASCII characters), attempting to

open a directory as a file, and giving invalid command-line options.

The exit status 4 is special; when a fatal error occurs, bc(1) always exits and returns 4, no matter what

mode bc(1) is in.

The other statuses will only be returned when bc(1) is not in interactive mode (see the INTERACTIVE
MODE section), since bc(1) resets its state (see the RESET section) and accepts more input when one

of those errors occurs in interactive mode. This is also the case when interactive mode is forced by the

-i flag or --interactive option.

These exit statuses allow bc(1) to be used in shell scripting with error checking, and its normal

behavior can be forced by using the -i flag or --interactive option.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



INTERACTIVE MODE
Per the standard (see the STANDARDS section), bc(1) has an interactive mode and a non-interactive

mode. Interactive mode is turned on automatically when both stdin and stdout are hooked to a

terminal, but the -i flag and --interactive option can turn it on in other situations.

In interactive mode, bc(1) attempts to recover from errors (see the RESET section), and in normal

execution, flushes stdout as soon as execution is done for the current input. bc(1) may also reset on

SIGINT instead of exit, depending on the contents of, or default for, the BC_SIGINT_RESET
environment variable (see the ENVIRONMENT VARIABLES section).

TTY MODE
If stdin, stdout, and stderr are all connected to a TTY, then "TTY mode" is considered to be available,

and thus, bc(1) can turn on TTY mode, subject to some settings.

If there is the environment variable BC_TTY_MODE in the environment (see the ENVIRONMENT
VARIABLES section), then if that environment variable contains a non-zero integer, bc(1) will turn on

TTY mode when stdin, stdout, and stderr are all connected to a TTY. If the BC_TTY_MODE
environment variable exists but is not a non-zero integer, then bc(1) will not turn TTY mode on.

If the environment variable BC_TTY_MODE does not exist, the default setting is used. The default

setting can be queried with the -h or --help options.

TTY mode is different from interactive mode because interactive mode is required in the bc(1) standard

(see the STANDARDS section), and interactive mode requires only stdin and stdout to be connected to

a terminal.

Command-Line History
Command-line history is only enabled if TTY mode is, i.e., that stdin, stdout, and stderr are connected

to a TTY and the BC_TTY_MODE environment variable (see the ENVIRONMENT VARIABLES
section) and its default do not disable TTY mode. See the COMMAND LINE HISTORY section for

more information.

Prompt
If TTY mode is available, then a prompt can be enabled. Like TTY mode itself, it can be turned on or

off with an environment variable: BC_PROMPT (see the ENVIRONMENT VARIABLES section).

If the environment variable BC_PROMPT exists and is a non-zero integer, then the prompt is turned on

when stdin, stdout, and stderr are connected to a TTY and the -P and --no-prompt options were not

used. The read prompt will be turned on under the same conditions, except that the -R and --no-read-
prompt options must also not be used.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



However, if BC_PROMPT does not exist, the prompt can be enabled or disabled with the

BC_TTY_MODE environment variable, the -P and --no-prompt options, and the -R and --no-read-
prompt options. See the ENVIRONMENT VARIABLES and OPTIONS sections for more details.

SIGNAL HANDLING
Sending a SIGINT will cause bc(1) to do one of two things.

If bc(1) is not in interactive mode (see the INTERACTIVE MODE section), or the

BC_SIGINT_RESET environment variable (see the ENVIRONMENT VARIABLES section), or its

default, is either not an integer or it is zero, bc(1) will exit.

However, if bc(1) is in interactive mode, and the BC_SIGINT_RESET or its default is an integer and

non-zero, then bc(1) will stop executing the current input and reset (see the RESET section) upon

receiving a SIGINT.

Note that "current input" can mean one of two things. If bc(1) is processing input from stdin in

interactive mode, it will ask for more input. If bc(1) is processing input from a file in interactive mode,

it will stop processing the file and start processing the next file, if one exists, or ask for input from stdin
if no other file exists.

This means that if a SIGINT is sent to bc(1) as it is executing a file, it can seem as though bc(1) did not

respond to the signal since it will immediately start executing the next file. This is by design; most

files that users execute when interacting with bc(1) have function definitions, which are quick to parse.

If a file takes a long time to execute, there may be a bug in that file. The rest of the files could still be

executed without problem, allowing the user to continue.

SIGTERM and SIGQUIT cause bc(1) to clean up and exit, and it uses the default handler for all other

signals. The one exception is SIGHUP; in that case, and only when bc(1) is in TTY mode (see the

TTY MODE section), a SIGHUP will cause bc(1) to clean up and exit.

COMMAND LINE HISTORY
bc(1) supports interactive command-line editing.

If bc(1) can be in TTY mode (see the TTY MODE section), history can be enabled. This means that

command-line history can only be enabled when stdin, stdout, and stderr are all connected to a TTY.

Like TTY mode itself, it can be turned on or off with the environment variable BC_TTY_MODE (see

the ENVIRONMENT VARIABLES section).

If history is enabled, previous lines can be recalled and edited with the arrow keys.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)



Note: tabs are converted to 8 spaces.

LOCALES
This bc(1) ships with support for adding error messages for different locales and thus, supports

LC_MESSAGES.

SEE ALSO
dc(1)

STANDARDS
bc(1) is compliant with the IEEE Std 1003.1-2017 ("POSIX.1-2017") specification at

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html . The flags -efghiqsvVw, all long

options, and the extensions noted above are extensions to that specification.

In addition, the behavior of the quit implements an interpretation of that specification that is different

from all known implementations. For more information see the Statements subsection of the SYNTAX
section.

Note that the specification explicitly says that bc(1) only accepts numbers that use a period (.) as a

radix point, regardless of the value of LC_NUMERIC.

This bc(1) supports error messages for different locales, and thus, it supports LC_MESSAGES.

BUGS
Before version 6.1.0, this bc(1) had incorrect behavior for the quit statement.

No other bugs are known. Report bugs at https://git.gavinhoward.com/gavin/bc .

AUTHORS
Gavin D. Howard <gavin@gavinhoward.com> and contributors.

BC(1) General Commands Manual BC(1)

Gavin D. Howard February 2023 BC(1)


