LIBBE(3) FreeBSD Library Functions Manual LIBBE(3)

NAME
libbe - library for creating, destroying and modifying ZFS boot environments

LIBRARY
Boot Environment Library (libbe, -Ibe)

SYNOPSIS
#include <be.h>

libbe_handle_t *hdl
libbe_init(const char *be _root);

void
libbe_close(libbe_handle t *hdl);

const char *
be_active name(libbe_handle t *hdl);

const char *
be active path(libbe handle t *hdl);

const char *
be_nextboot_name(libbe_handle_t *hdl);

const char *
be nextboot_path(libbe_handle t *hdl);

const char *

be_root_path(libbe_handle_t *hdl);

int

be_snapshot(libbe_handle_t *hdl, const char *be_name, const char *snap_name, bool recursive,

char *result);

bool
be is auto_snapshot_name(libbe _handle t *hdl, const char * snap);

int
be_create(libbe_handle_t *hdl, const char *be_name);

FreeBSD 14.2-RELEASE March 18, 2024 FreeBSD 14.2-RELEASE

LIBBE(3) FreeBSD Library Functions Manual LIBBE(3)

int
be create depth(libbe handle t*hdl, const char *be name, const char *snap, int depth);

int
be_create from_existing(libbe_handle_t *hdl, const char *be_name, const char *be_origin);

int
be create from_existing_snap(libbe _handle t *hdl, const char *be _name, const char * snap);

int
be rename(libbe_handle t *hdl, const char *be old, const char *be _new);

int
be activate(libbe_handle_t *hdl, const char *be_name, bool temporary);

int
be_deactivate(libbe _handle_t *hdl, const char *be_name, bool temporary);

int
be destroy(libbe _handle t *hdl, const char *be _name, int options);

void
be_nicenum(uinté4_t num, char *buf, size t bufsz);

int
be_mount(libbe_handle t *hdl, const char *be _name, const char *mntpoint, int flags, char *result);

int
be mounted_at(libbe handle t *hdl, const char *path, nvlist_t *details);

int
be_unmount(libbe_handle_t *hdl, const char *be_name, int flags);

int
libbe_errno(libbe_handle t *hdl);

const char *
libbe_error_description(libbe_handle_t *hdl);

void

FreeBSD 14.2-RELEASE March 18, 2024 FreeBSD 14.2-RELEASE

LIBBE(3) FreeBSD Library Functions Manual LIBBE(3)

libbe print_on_error(libbe handle t*hdl, bool doprint);

int
be root_concat(libbe_handle t *hdl, const char *be_name, char *result);

int
be validate name(libbe_handle t *hdl, const char *be_name);

int
be validate snap(libbe_handle t *hdl, const char * snap);

int
be_exists(libbe_handle_t *hdl, const char *be_name);

int
be_export(libbe_handle_t *hdl, const char *be_name, int fd);

int
be_import(libbe_handle_t *hdl, const char *be _name, int fd);

int
be prop_list_alloc(nvlist_t **prop_list);

int
be get_bootenv_props(libbe_handle t *hdl, nvlist_t *be list);

int
be get_dataset _props(libbe handle t *hdl, const char *ds_name, nvlist_t *props);

int
be get_dataset_snapshots(libbe_handle t *hdl, const char *ds_name, nvlist_t *snap_list);

void
be prop_list_free(nvlist_t *prop _list);

DESCRIPTION
libbe interfaces with libzfs to provide a set of functions for various operations regarding ZFS boot

environments including "deep" boot environments in which a boot environments has child datasets.

A context structure is passed to each function, allowing for a small amount of state to be retained, such

FreeBSD 14.2-RELEASE March 18, 2024 FreeBSD 14.2-RELEASE

LIBBE(3) FreeBSD Library Functions Manual LIBBE(3)

as errors from previous operations. libbe may be configured to print the corresponding error message to
stderr when an error is encountered with libbe print_on_error().

All functions returning an int return O on success, or alibbe errno otherwise as described in
DIAGNOSTICS

The libbe_init() function takes an optional BE root and initializes libbe, returning alibbe_handle_t* on
success, or NULL on error. If aBE root is supplied, libbe will only operate out of that pool and BE root.
An error may occur if;

® /boot and / are not on the same filesystem and device,

® libzfsfalstoinitiaize,

® The system has not been properly booted with a ZFS boot environment,
® libbefailsto open the zpool the active boot environment resides on, or
© libbefailsto locate the boot environment that is currently mounted.

Thelibbe_close() function frees all resources previously acquired in libbe_init(), invalidating the handle
in the process.

The be_active_name() function returns the name of the currently booted boot environment. This boot
environment may not belong to the same BE root as the root libbe is operating on!

The be_active path() function returns the full path of the currently booted boot environment. This boot
environment may not belong to the same BE root as the root libbe is operating on!

The be_nextboot_name() function returns the name of the boot environment that will be active on
reboot.

The be_nextboot_path() function returns the full path of the boot environment that will be active on
reboot.

The be root_path() function returns the boot environment root path.
The be_snapshot() function creates a snapshot of be_name named snap_name. A value of NULL may

be used, indicating that be_snaphot() should derive the snapshot name from the current date and time. If
recursiveis set, then be_snapshot() will recursively snapshot the dataset. If result isnot NULL, then it

FreeBSD 14.2-RELEASE March 18, 2024 FreeBSD 14.2-RELEASE

LIBBE(3) FreeBSD Library Functions Manual LIBBE(3)

will be populated with the final "be_name@snap_name".

Thebe is auto_snapshot_name() function is used to determine if the given snapshot name matches the
format that the be_snapshot() function will use by default if it is not given a snapshot nameto use. It
returns true if the name matches the format, and false if it does not.

The be_create() function creates a boot environment with the given name. The new boot environment
will be created from a recursive snapshot of the currently booted boot environment.

The be_create depth() function creates a boot environment with the given name from an existing
snapshot. The depth parameter specifies the depth of recursion that will be cloned from the existing
snapshot. A depth of 'O’ isno recursion and ’-1" isunlimited (i.e., arecursive boot environment).

The be_create from_existing() function creates a boot environment with the given name from the name
of an existing boot environment. A recursive snapshot will be made of the origin boot environment, and
the new boot environment will be created from that.

The be create from_existing_snap() function creates a recursive boot environment with the given name
from an existing snapshot.

The be_rename() function renames a boot environment without unmounting it, asif renamed with the -u
argument were passed to zfsrename

The be_activate() function makes a boot environment active on the next boot. If the temporary flag is
set, then it will be active for the next boot only, as done by zfsbootcfg(8).

The be_deactivate() function deactivates a boot environment. If the temporary flag is set, then it will
cause removal of boot once configuration, set by be activate() function or by zfsbootcfg(8). If the
temporary flag is not set, be_deactivate() function will set zfs canmount property to noauto.

The be_destroy() function will recursively destroy the given boot environment. 1t will not destroy a
mounted boot environment unless the BE_DESTROY _FORCE option is set in options. If the
BE_DESTROY_ORIGIN optionisset in options, the be_destroy() function will destroy the origin
snapshot to this boot environment as well.

The be_nicenum() function will format name in atraditional ZFS humanized format, similar to
humanize_number(3). Thisfunction effectively proxies zfs_nicenum() from libzfs.

The be_mount() function will mount the given boot environment. If mountpoint isNULL, a mount
point will be generated in /tmp using mkdtemp(3). If result isnot NULL, it should be large enough to

FreeBSD 14.2-RELEASE March 18, 2024 FreeBSD 14.2-RELEASE

LIBBE(3) FreeBSD Library Functions Manual LIBBE(3)

accommodate BE MAXPATHLEN including the null terminator. the final mount point will be copied
into it. Settingthe BE_ MNT_FORCE flag will pass MNT_FORCE to the underlying mount(2) call.

The be _mounted_at() function will check if there is a boot environment mounted at the given path. If
detailsisnot NULL, it will be populated with alist of the mounted dataset’ s properties. Thislist of
properties matches the properties collected by be_get_bootenv_props().

The be_unmount() function will unmount the given boot environment. Setting the BE_ MNT_FORCE
flag will pass MNT_FORCE to the underlying mount(2) call.

Thelibbe_errno() function returnsthe libbe errno.
Thelibbe_error_description() function returns a string description of the currently set libbe errno.

Thelibbe_print_on_error() function will change whether or not libbe prints the description of any
encountered error to stderr, based on doprint.

The be _root_concat() function will concatenate the boot environment root and the given boot
environment name into result.

The be_validate_name() function will validate the given boot environment name for both length
restrictions as well asvalid character restrictions. This function does not set theinternal library error
state.

The be_validate _snap() function will validate the given snapshot name. The snapshot must have avalid
name, exist, and have a mountpoint of /. This function does not set the internal library error state.

The be_exists() function will check whether the given boot environment exists and has a mountpoint of
/. Thisfunction does not set the internal library error state, but will return the appropriate error.

The be_export() function will export the given boot environment to the file specified by fd. A snapshot
will be created of the boot environment prior to export.

The be_import() function will import the boot environment in the file specified by fd, and giveit the
name be_name.

Thebe prop_list_alloc() function allocates a property list suitable for passing to

be _get_bootenv_props(), be_get_dataset_props(), or be_get_dataset_snapshots(). It should be freed later
by be prop_list_free.

FreeBSD 14.2-RELEASE March 18, 2024 FreeBSD 14.2-RELEASE

LIBBE(3) FreeBSD Library Functions Manual LIBBE(3)

Thebe _get_bootenv_props() function will populate be_list with nvpair_t of boot environment names
paired with an nvlist_t of their properties. The following properties are currently collected as

appropriate;

Returned name Description

dataset -

name Boot environment name
mounted Current mount point
mountpoint "mountpoint” property

origin "origin" property

creation "creation” property

active Currently booted environment
used Literal "used" property
usedds Literal "usedds" property
usedsnap Literal "usedrefreserv" property
referenced Literal "referenced" property
nextboot Active on next boot

Only the "dataset", "name", "active", and "nextboot" returned values will always be present. All other
properties may be omitted if not available.

Thebe_get_dataset_props() function will get properties of the specified dataset. propsis populated
directly with alist of the properties as returned by be_get_bootenv_props().

Thebe _get_dataset_snapshots() function will retrieve all snapshots of the given dataset. snap_list will
be populated with alist of nvpair_t exactly as specified by be get_bootenv_props().

Thebe prop_list_free() function will free the property list.

DIAGNOSTICS
Upon error, one of the following values will be returned:
® BE_ERR_SUCCESS
BE_ERR INVALIDNAME
BE_ERR_EXISTS
BE_ERR_NOENT
BE_ERR_PERMS
BE_ERR_DESTROYACT
BE_ERR_DESTROYMNT
BE_ERR_BADPATH
BE_ERR_PATHBUSY

® @ @ & @& @ @ S

FreeBSD 14.2-RELEASE March 18, 2024 FreeBSD 14.2-RELEASE

LIBBE(3)

® @ & @& @ @ @ @@ @ @ @ @

SEE AL SO
bectl(8)

HISTORY

FreeBSD Library Functions Manual

BE_ERR_PATHLEN
BE_ERR_BADMOUNT
BE_ERR_NOORIGIN
BE_ERR_MOUNTED
BE_ERR_NOMOUNT
BE_ERR_ZFSOPEN
BE_ERR_ZFSCLONE
BE_ERR IO
BE_ERR_NOPOOL
BE_ERR_NOMEM
BE_ERR_UNKNOWN
BE_ERR_INVORIGIN

LIBBE(3)

libbe and its corresponding command, bectl(8), were written as a 2017 Google Summer of Code project
with Allan Jude serving as amentor. Later work was done by Kyle Evans <kevans@FreeBSD.org>.

FreeBSD 14.2-RELEASE

March 18, 2024

FreeBSD 14.2-RELEASE

