
NAME
bhnd - BHND driver programming interface

SYNOPSIS
#include <dev/bhnd/bhnd.h>

Bus Resource Functions
int

bhnd_activate_resource(device_t dev, int type, int rid, struct bhnd_resource *r);

struct bhnd_resource *

bhnd_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end,

rman_res_t count, u_int flags);

struct bhnd_resource *

bhnd_alloc_resource_any(device_t dev, int type, int *rid, u_int flags);

int

bhnd_alloc_resources(device_t dev, struct resource_spec *rs, struct bhnd_resource **res);

int

bhnd_deactivate_resource(device_t dev, int type, int rid, struct bhnd_resource *r);

int

bhnd_release_resource(device_t dev, int type, int rid, struct bhnd_resource *r);

void

bhnd_release_resources(device_t dev, const struct resource_spec *rs, struct bhnd_resource **res);

Bus Space Functions
void

bhnd_bus_barrier(struct bhnd_resource *r, bus_size_t offset, bus_size_t length, int flags);

uint8_t

bhnd_bus_read_1(struct bhnd_resource *r, bus_size_t offset);

uint16_t

bhnd_bus_read_2(struct bhnd_resource *r, bus_size_t offset);

uint32_t

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

bhnd_bus_read_4(struct bhnd_resource *r, bus_size_t offset);

void

bhnd_bus_read_multi_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap, bus_size_t count);

void

bhnd_bus_read_multi_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap, bus_size_t count);

void

bhnd_bus_read_multi_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap, bus_size_t count);

void

bhnd_bus_read_multi_stream_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap,

bus_size_t count);

void

bhnd_bus_read_multi_stream_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap,

bus_size_t count);

void

bhnd_bus_read_multi_stream_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap,

bus_size_t count);

void

bhnd_bus_read_region_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap, bus_size_t count);

void

bhnd_bus_read_region_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap, bus_size_t count);

void

bhnd_bus_read_region_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap, bus_size_t count);

void

bhnd_bus_read_region_stream_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap,

bus_size_t count);

void

bhnd_bus_read_region_stream_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap,

bus_size_t count);

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

void

bhnd_bus_read_region_stream_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap,

bus_size_t count);

void

bhnd_bus_read_stream_1(struct bhnd_resource *r, bus_size_t offset);

void

bhnd_bus_read_stream_2(struct bhnd_resource *r, bus_size_t offset);

uint32_t

bhnd_bus_read_stream_4(struct bhnd_resource *r, bus_size_t offset);

void

bhnd_bus_set_multi_1(struct bhnd_resource *r, bus_size_t offset, uint8_t value, bus_size_t count);

void

bhnd_bus_set_multi_2(struct bhnd_resource *r, bus_size_t offset, uint16_t value, bus_size_t count);

void

bhnd_bus_set_multi_4(struct bhnd_resource *r, bus_size_t offset, uint32_t value, bus_size_t count);

void

bhnd_bus_set_region_1(struct bhnd_resource *r, bus_size_t offset, uint8_t value, bus_size_t count);

void

bhnd_bus_set_region_2(struct bhnd_resource *r, bus_size_t offset, uint16_t value, bus_size_t count);

void

bhnd_bus_set_region_4(struct bhnd_resource *r, bus_size_t offset, uint32_t value, bus_size_t count);

void

bhnd_bus_write_1(struct bhnd_resource *r, uint8_t value);

void

bhnd_bus_write_2(struct bhnd_resource *r, uint16_t value);

void

bhnd_bus_write_4(struct bhnd_resource *r, uint32_t value);

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

void

bhnd_bus_write_multi_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap, bus_size_t count);

void

bhnd_bus_write_multi_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap, bus_size_t count);

void

bhnd_bus_write_multi_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap, bus_size_t count);

void

bhnd_bus_write_multi_stream_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap,

bus_size_t count);

void

bhnd_bus_write_multi_stream_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap,

bus_size_t count);

void

bhnd_bus_write_multi_stream_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap,

bus_size_t count);

void

bhnd_bus_write_region_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap, bus_size_t count);

void

bhnd_bus_write_region_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap,

bus_size_t count);

void

bhnd_bus_write_region_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap,

bus_size_t count);

void

bhnd_bus_write_region_stream_1(struct bhnd_resource *r, bus_size_t offset, uint8_t *datap,

bus_size_t count);

void

bhnd_bus_write_region_stream_2(struct bhnd_resource *r, bus_size_t offset, uint16_t *datap,

bus_size_t count);

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

void

bhnd_bus_write_region_stream_4(struct bhnd_resource *r, bus_size_t offset, uint32_t *datap,

bus_size_t count);

void

bhnd_bus_write_stream_1(struct bhnd_resource *r, uint8_t value);

void

bhnd_bus_write_stream_2(struct bhnd_resource *r, uint16_t value);

void

bhnd_bus_write_stream_4(struct bhnd_resource *r, uint32_t value);

Device Configuration Functions
int

bhnd_read_ioctl(device_t dev, uint16_t *ioctl);

int

bhnd_write_ioctl(device_t dev, uint16_t value, uint16_t mask);

int

bhnd_read_iost(device_t dev, uint16_t *iost);

uint32_t

bhnd_read_config(device_t dev, bus_size_t offset, void *value, u_int width);

int

bhnd_write_config(device_t dev, bus_size_t offset, const void *value, u_int width);

int

bhnd_reset_hw(device_t dev, uint16_t ioctl, uint16_t reset_ioctl);

int

bhnd_suspend_hw(device_t dev, uint16_t ioctl);

bool

bhnd_is_hw_suspended(device_t dev);

Device Information Functions
bhnd_attach_type

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

bhnd_get_attach_type(device_t dev);

const struct bhnd_chipid *

bhnd_get_chipid(device_t dev);

bhnd_devclass_t

bhnd_get_class(device_t dev);

u_int

bhnd_get_core_index(device_t dev);

struct bhnd_core_info

bhnd_get_core_info(device_t dev);

int

bhnd_get_core_unit(device_t dev);

uint16_t

bhnd_get_device(device_t dev);

const char *

bhnd_get_device_name(device_t dev);

uint8_t

bhnd_get_hwrev(device_t dev);

uint16_t

bhnd_get_vendor(device_t dev);

const char *

bhnd_get_vendor_name(device_t dev);

int

bhnd_read_board_info(device_t dev, struct bhnd_board_info *info);

Device Matching Functions
bool

bhnd_board_matches(const struct bhnd_board_info *board, const struct bhnd_board_match *desc);

device_t

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

bhnd_bus_match_child(device_t bus, const struct bhnd_core_match *desc);

bool

bhnd_chip_matches(const struct bhnd_chipid *chip, const struct bhnd_chip_match *desc);

struct bhnd_core_match

bhnd_core_get_match_desc(const struct bhnd_core_info *core);

bool

bhnd_core_matches(const struct bhnd_core_info *core, const struct bhnd_core_match *desc);

bool

bhnd_cores_equal(const struct bhnd_core_info *lhs, const struct bhnd_core_info *rhs);

bool

bhnd_hwrev_matches(uint16_t hwrev, const struct bhnd_hwrev_match *desc);

const struct bhnd_core_info *

bhnd_match_core(const struct bhnd_core_info *cores, u_int num_cores,

const struct bhnd_core_match *desc);

Device Table Functions
const struct bhnd_device *

bhnd_device_lookup(device_t dev, const struct bhnd_device *table, size_t entry_size);

bool

bhnd_device_matches(device_t dev, const struct bhnd_device_match *desc);

uint32_t

bhnd_device_quirks(device_t dev, const struct bhnd_device *table, size_t entry_size);

BHND_BOARD_QUIRK(board, flags);

BHND_CHIP_QUIRK(chip, hwrev, flags);

BHND_CORE_QUIRK(hwrev, flags);

BHND_DEVICE(vendor, device, desc, quirks, ...);

BHND_DEVICE_IS_END(struct bhnd_device *d);

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_DEVICE_QUIRK_IS_END(struct bhnd_device_quirk *q);

BHND_PKG_QUIRK(chip, pkg, flags);

struct bhnd_device_quirk {

struct bhnd_device_match desc;

uint32_t quirks;

};

struct bhnd_device {

const struct bhnd_device_match core;

const char *desc;

const struct bhnd_device_quirk *quirks_table;

uint32_t device_flags;

};

enum {

BHND_DF_ANY = 0,

BHND_DF_HOSTB = (1 << 0),

BHND_DF_SOC = (1 << 1),

BHND_DF_ADAPTER = (1 << 2)

};

#define BHND_DEVICE_END { { BHND_MATCH_ANY }, NULL, NULL, 0 }

#define BHND_DEVICE_QUIRK_END { { BHND_MATCH_ANY }, 0 }

DMA Address Translation Functions
int

bhnd_get_dma_translation(device_t dev, u_int width, uint32_t flags, bus_dma_tag_t *dmat,

struct bhnd_dma_translation *translation);

struct bhnd_dma_translation {

bhnd_addr_t base_addr;

bhnd_addr_t addr_mask;

bhnd_addr_t addrext_mask;

uint32_t flags;

};

typedef enum {

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_DMA_ADDR_30BIT = 30,

BHND_DMA_ADDR_32BIT = 32,

BHND_DMA_ADDR_64BIT = 64

} bhnd_dma_addrwidth;

enum bhnd_dma_translation_flags {

BHND_DMA_TRANSLATION_PHYSMAP = (1<<0),

BHND_DMA_TRANSLATION_BYTESWAPPED = (1<<1)

};

Interrupt Functions
u_int

bhnd_get_intr_count(device_t dev);

int

bhnd_get_intr_ivec(device_t dev, u_int intr, u_int *ivec);

int

bhnd_map_intr(device_t dev, u_int intr, rman_res_t *irq);

void

bhnd_unmap_intr(device_t dev, rman_res_t irq);

NVRAM Functions
int

bhnd_nvram_getvar(device_t dev, const char *name, void *buf, size_t *len, bhnd_nvram_type type);

int

bhnd_nvram_getvar_array(device_t dev, const char *name, void *buf, size_t size,

bhnd_nvram_type type);

int

bhnd_nvram_getvar_int(device_t dev, const char *name, void *value, int width);

int

bhnd_nvram_getvar_int8(device_t dev, const char *name, int8_t *value);

int

bhnd_nvram_getvar_int16(device_t dev, const char *name, int16_t *value);

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

int

bhnd_nvram_getvar_int32(device_t dev, const char *name, int32_t *value);

int

bhnd_nvram_getvar_uint(device_t dev, const char *name, void *value, int width);

int

bhnd_nvram_getvar_uint8(device_t dev, const char *name, uint8_t *value);

int

bhnd_nvram_getvar_uint16(device_t dev, const char *name, uint16_t *value);

int

bhnd_nvram_getvar_uint32(device_t dev, const char *name, uint32_t *value);

int

bhnd_nvram_getvar_str(device_t dev, const char *name, char *buf, size_t len, size_t *rlen);

const char *

bhnd_nvram_string_array_next(const char *inp, size_t ilen, const char *prev, size_t *olen);

typedef enum {

BHND_NVRAM_TYPE_UINT8 = 0,

BHND_NVRAM_TYPE_UINT16 = 1,

BHND_NVRAM_TYPE_UINT32 = 2,

BHND_NVRAM_TYPE_UINT64 = 3,

BHND_NVRAM_TYPE_INT8 = 4,

BHND_NVRAM_TYPE_INT16 = 5,

BHND_NVRAM_TYPE_INT32 = 6,

BHND_NVRAM_TYPE_INT64 = 7,

BHND_NVRAM_TYPE_CHAR = 8,

BHND_NVRAM_TYPE_STRING = 9,

BHND_NVRAM_TYPE_BOOL = 10,

BHND_NVRAM_TYPE_NULL = 11,

BHND_NVRAM_TYPE_DATA = 12

BHND_NVRAM_TYPE_UINT8_ARRAY = 16,

BHND_NVRAM_TYPE_UINT16_ARRAY = 17,

BHND_NVRAM_TYPE_UINT32_ARRAY = 18,

BHND_NVRAM_TYPE_UINT64_ARRAY = 19,

BHND_NVRAM_TYPE_INT8_ARRAY = 20,

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_NVRAM_TYPE_INT16_ARRAY = 21,

BHND_NVRAM_TYPE_INT32_ARRAY = 22,

BHND_NVRAM_TYPE_INT64_ARRAY = 23,

BHND_NVRAM_TYPE_CHAR_ARRAY = 24,

BHND_NVRAM_TYPE_STRING_ARRAY = 25,

BHND_NVRAM_TYPE_BOOL_ARRAY = 26

} bhnd_nvram_type;

Port/Region Functions
int

bhnd_decode_port_rid(device_t dev, int type, int rid, bhnd_port_type *port_type, u_int *port,

u_int *region);

u_int

bhnd_get_port_count(device_t dev, bhnd_port_type type);

int

bhnd_get_port_rid(device_t dev, bhnd_port_type type, u_int port, u_int region);

int

bhnd_get_region_addr(device_t dev, bhnd_port_type port_type, u_int port, u_int region,

bhnd_addr_t *region_addr, bhnd_size_t *region_size);

u_int

bhnd_get_region_count(device_t dev, bhnd_port_type type, u_int port);

bool

bhnd_is_region_valid(device_t dev, bhnd_port_type type, u_int port, u_int region);

typedef enum {

BHND_PORT_DEVICE = 0,

BHND_PORT_BRIDGE = 1,

BHND_PORT_AGENT = 2

} bhnd_port_type;

Power Management Functions
int

bhnd_alloc_pmu(device_t dev);

int

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

bhnd_release_pmu(device_t dev);

int

bhnd_enable_clocks(device_t dev, uint32_t clocks);

int

bhnd_request_clock(device_t dev, bhnd_clock clock);

int

bhnd_get_clock_freq(device_t dev, bhnd_clock clock, u_int *freq);

int

bhnd_get_clock_latency(device_t dev, bhnd_clock clock, u_int *latency);

int

bhnd_request_ext_rsrc(device_t dev, u_int rsrc);

int

bhnd_release_ext_rsrc(device_t dev, u_int rsrc);

typedef enum {

BHND_CLOCK_DYN = (1 << 0),

BHND_CLOCK_ILP = (1 << 1),

BHND_CLOCK_ALP = (1 << 2),

BHND_CLOCK_HT = (1 << 3)

} bhnd_clock;

Service Provider Functions
int

bhnd_register_provider(device_t dev, bhnd_service_t service);

int

bhnd_deregister_provider(device_t dev, bhnd_service_t service);

device_t

bhnd_retain_provider(device_t dev, bhnd_service_t service);

void

bhnd_release_provider(device_t dev, device_t provider, bhnd_service_t service);

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

typedef enum {

BHND_SERVICE_CHIPC,

BHND_SERVICE_PWRCTL,

BHND_SERVICE_PMU,

BHND_SERVICE_NVRAM,

BHND_SERVICE_GPIO,

BHND_SERVICE_ANY = 1000

} bhnd_service_t;

Utility Functions
bhnd_erom_class_t *

bhnd_driver_get_erom_class(driver_t *driver);

bhnd_devclass_t

bhnd_find_core_class(uint16_t vendor, uint16_t device);

const char *

bhnd_find_core_name(uint16_t vendor, uint16_t device);

bhnd_devclass_t

bhnd_core_class(const struct bhnd_core_info *ci);

const char *

bhnd_core_name(const struct bhnd_core_info *ci);

int

bhnd_format_chip_id(char *buffer, size_t size, uint16_t chip_id);

void

bhnd_set_custom_core_desc(device_t dev, const char *dev_name);

void

bhnd_set_default_core_desc(device_t dev);

const char *

bhnd_vendor_name(uint16_t vendor);

#define BHND_CHIPID_MAX_NAMELEN 32

DESCRIPTION

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

bhnd provides a unified bus and driver programming interface for the on-chip interconnects and IP cores

found in Broadcom Home Networking Division (BHND) devices.

The BHND device family consists of MIPS/ARM SoCs (System On a Chip) and host-connected

chipsets based on a common library of Broadcom IP cores, connected via one of two on-chip backplane

(hardware bus) architectures.

Hardware designed prior to 2009 used Broadcom’s "SSB" backplane architecture, based on Sonics

Silicon’s interconnect IP. Each core on the Sonics backplane vends a 4 KiB register block, containing

both device-specific CSRs, and SSB-specific per-core device management (enable/reset/etc) registers.

Subsequent hardware is based on Broadcom’s "BCMA" backplane, based on ARM’s AMBA IP. The IP

cores used in earlier SSB-based devices were adapted for compatibility with the new backplane, with

additional "wrapper" cores providing per-core device management functions in place of the SSB per-

core management registers.

When BHND hardware is used as a host-connected peripheral (e.g., in a PCI Wi-Fi card), the on-chip

peripheral controller core is configured to operate as an endpoint device, bridging access to the SoC

hardware:

- Host access to SoC address space is provided via a set of register windows (e.g., a set of

configurable windows into SoC address space mapped via PCI BARs)

- DMA is supported by the bridge core’s sparse mapping of host address space into the

backplane address space. These address regions may be used as a target for the on-chip DMA

engine.

- Any backplane interrupt vectors routed to the bridge core may be mapped by the bridge to host

interrupts (e.g., PCI INTx/MSI/MSI-X).

The bhnd driver programming interface -- and bhndb(4) host bridge drivers -- support the

implementation of common drivers for Broadcom IP cores, whether attached via a BHND host bridge,

or via the native SoC backplane.

Bus Resource Functions
The bhnd_resource functions are wrappers for the standard struct resource bus APIs, providing support

for SYS_RES_MEMORY resources that, on bhndb(4) bridged chipsets, may require on-demand

remapping of address windows prior to accessing bus memory.

These functions are primarily used in the implementation of BHND platform device drivers that, on

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

host-connected peripherals, must share a small set of register windows during initial setup and teardown.

BHND peripherals are designed to not require register window remapping during normal operation, and

most drivers may safely use the standard struct resource APIs directly.

The bhnd_activate_resource() function activates a previously allocated resource.

The arguments are as follows:

dev The device holding ownership of the allocated resource.

type The type of the resource.

rid The bus-specific handle that identifies the resource being activated.

r A pointer to the resource returned by bhnd_alloc_resource().

The bhnd_alloc_resource() function allocates a resource from a device’s parent bhnd(4) bus.

The arguments are as follows:

dev The device requesting resource ownership.

type The type of resource to allocate. This may be any type supported by the standard

bus_alloc_resource(9) function.

rid The bus-specific handle identifying the resource being allocated.

start The start address of the resource.

end The end address of the resource.

count The size of the resource.

flags The flags for the resource to be allocated. These may be any values supported by the standard

bus_alloc_resource(9) function.

To request that the bus supply the resource’s default start, end, and count values, pass start and end

values of 0ul and ~0ul respectively, and a count of 1.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

The bhnd_alloc_resource_any() function is a convenience wrapper for bhnd_alloc_resource(), using the

resource’s default start, end, and count values.

The arguments are as follows:

dev The device requesting resource ownership.

type The type of resource to allocate. This may be any type supported by the standard

bus_alloc_resource(9) function.

rid The bus-specific handle identifying the resource being allocated.

flags The flags for the resource to be allocated. These may be any values supported by the standard

bus_alloc_resource(9) function.

The bhnd_alloc_resources() function allocates resources defined in resource specification from a

device’s parent bhnd(4) bus.

The arguments are as follows:

dev The device requesting ownership of the resources.

rs A standard bus resource specification. If all requested resources, are successfully allocated, this

will be updated with the allocated resource identifiers.

res If all requested resources are successfully allocated, this will be populated with the allocated

struct bhnd_resource instances.

The bhnd_deactivate_resource() function deactivates a resource previously activated by.

bhnd_activate_resource(). The arguments are as follows:

dev The device holding ownership of the activated resource.

type The type of the resource.

rid The bus-specific handle identifying the resource.

r A pointer to the resource returned by bhnd_alloc_resource.

The bhnd_release_resource() function frees a resource previously returned by bhnd_alloc_resource().

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

The arguments are as follows:

dev The device holding ownership of the resource.

type The type of the resource.

rid The bus-specific handle identifying the resource.

r A pointer to the resource returned by bhnd_alloc_resource.

The bhnd_release_resources() function frees resources previously returned by bhnd_alloc_resources().

The arguments are as follows:

dev The device that owns the resources.

rs A standard bus resource specification previously initialized by bhnd_alloc_resources().

res The resources to be released.

The bhnd_resource structure contains the following fields:

res A pointer to the bus struct resource.

direct If true, the resource requires bus window remapping before it is MMIO accessible.

Bus Space Functions
The bhnd_bus_space functions wrap their equivalent bus_space(9) counterparts, and provide support for

accessing bus memory via struct bhnd_resource.

bhnd_bus_barrier()

bhnd_bus_[read|write]_[1|2|4]()
bhnd_bus_[read_multi|write_multi]_[1|2|4]()
bhnd_bus_[read_multi_stream|write_multi_stream]_[1|2|4]()
bhnd_bus_[read_region|write_region]_[1|2|4]()
bhnd_bus_[read_region_stream|write_region_stream]_[1|2|4]()
bhnd_bus_[read_stream|write_stream]_[1|2|4]()
bhnd_bus_[set_multi|set_stream]_[1|2|4]()

Drivers that do not rely on struct bhnd_resource should use the standard struct resource and

bus_space(9) APIs directly.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

Device Configuration Functions
The bhnd_read_ioctl() function is used to read the I/O control register value of device dev, returning the

current value in ioctl.

The bhnd_write_ioctl() function is used to modify the I/O control register of dev. The new value of the

register is computed by updating any bits set in mask to value. The following I/O control flags are

supported:

BHND_IOCTL_BIST Initiate a built-in self-test (BIST). Must be cleared after BIST

results are read via the IOST (I/O Status) register.

BHND_IOCTL_PME Enable posting of power management events by the core.

BHND_IOCTL_CLK_FORCE Force disable of clock gating, resulting in all clocks being

distributed within the core. Should be set when

asserting/deasserting reset to ensure the reset signal fully

propagates to the entire core.

BHND_IOCTL_CLK_EN If cleared, the core clock will be disabled. Should be set during

normal operation, and cleared when the core is held in reset.

BHND_IOCTL_CFLAGS The mask of IOCTL bits reserved for additional core-specific I/O

control flags.

The bhnd_read_iost() function is used to read the I/O status register of device dev, returning the current

value in iost. The following I/O status flags are supported:

BHND_IOST_BIST_DONE Set upon BIST completion. Will be cleared when the

BHND_IOCTL_BIST flag of the I/O control register is cleared

using bhnd_write_ioctl().

BHND_IOST_BIST_FAIL Set upon detection of a BIST error; the value is unspecified if BIST

has not completed and BHND_IOST_BIST_DONE is not also set.

BHND_IOST_CLK Set if the core has required that clocked be ungated, or cleared

otherwise. The value is undefined if a core does not support clock

gating.

BHND_IOST_DMA64 Set if this core supports 64-bit DMA.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_IOST_CFLAGS The mask of IOST bits reserved for additional core-specific I/O

status flags.

The bhnd_read_config() function is used to read a data item of width bytes at offset from the backplane-

specific agent/config space of the device dev.

The bhnd_write_config() function is used to write a data item of width bytes with value at offset from

the backplane-specific agent/config space of the device dev. The requested width must be one of 1, 2, or

4 bytes.

The agent/config space accessible via bhnd_read_config() and bhnd_write_config() is backplane-

specific, and these functions should only be used for functionality that is not available via another bhnd
function.

The bhnd_suspend_hw() function transitions the device dev to a low power "RESET" state, writing ioctl

to the I/O control flags of dev. The hardware may be brought out of this state using bhnd_reset_hw().

The bhnd_reset_hw() function first transitions the device dev to a low power RESET state, writing

ioctl_reset to the I/O control flags of dev, and then brings the device out of RESET, writing ioctl to the

device’s I/O control flags.

The bhnd_is_hw_suspended() function returns true if the device dev is currently held in a RESET state,

or is otherwise not clocked. Otherwise, it returns false.

Any outstanding per-device PMU requests made using bhnd_enable_clocks(), bhnd_request_clock(), or

bhnd_request_ext_rsrc() will be released automatically upon placing a device into a RESET state.

Device Information Functions
The bhnd_get_attach_type() function returns the attachment type of the parent bhnd(4) bus of device

dev.

The following attachment types are supported:

BHND_ATTACH_ADAPTER The bus is resident on a bridged adapter, such as a PCI Wi-Fi

device.

BHND_ATTACH_NATIVE The bus is resident on the native host, such as the primary or

secondary bus of an embedded SoC.

The bhnd_get_chipid() function returns chip information from the parent bhnd(4) bus of device dev.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

The returned bhnd_chipid struct contains the following fields:

chip_id The chip identifier.

chip_rev The chip’s hardware revision.

chip_pkg The chip’s semiconductor package identifier.

Several different physical semiconductor package variants may exist for a given chip,

each of which may require driver workarounds for hardware errata, unpopulated

components, etc.

chip_type The interconnect architecture used by this chip.

chip_caps The bhnd capability flags supported by this chip.

enum_addr The backplane enumeration address. On SSB devices, this will be the base address of

the first SSB core. On BCMA devices, this will be the address of the enumeration

ROM (EROM) core.

ncores The number of cores on the chip backplane, or 0 if unknown.

The following constants are defined for known chip_type values:

BHND_CHIPTYPE_SIBA SSB interconnect.

BHND_CHIPTYPE_BCMA BCMA interconnect.

BHND_CHIPTYPE_BCMA_ALT BCMA-compatible variant found in Broadcom Northstar

ARM SoCs.

BHND_CHIPTYPE_UBUS UBUS interconnect. This BCMA-derived interconnect is

found in Broadcom BCM33xx DOCSIS SoCs, and BCM63xx

xDSL SoCs. UBUS is not currently supported by bhnd(4).

The following chip_caps flags are supported:

BHND_CAP_BP64 The backplane supports 64-bit addressing.

BHND_CAP_PMU PMU is present.

Additional symbolic constants for known chip_id, chip_pkg, and chip_type values are defined in

<dev/bhnd/bhnd_ids.h>.

The bhnd_get_class() function returns the BHND class of device dev, if the device’s vendor and device

identifiers are recognized. Otherwise, returns BHND_DEVCLASS_OTHER.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

One of the following device classes will be returned:

BHND_DEVCLASS_CC ChipCommon I/O Controller

BHND_DEVCLASS_CC_B ChipCommon Auxiliary Controller

BHND_DEVCLASS_PMU PMU Controller

BHND_DEVCLASS_PCI PCI Host/Device Bridge

BHND_DEVCLASS_PCIE PCIe Host/Device Bridge

BHND_DEVCLASS_PCCARD PCMCIA Host/Device Bridge

BHND_DEVCLASS_RAM Internal RAM/SRAM

BHND_DEVCLASS_MEMC Memory Controller

BHND_DEVCLASS_ENET IEEE 802.3 MAC/PHY

BHND_DEVCLASS_ENET_MAC IEEE 802.3 MAC

BHND_DEVCLASS_ENET_PHY IEEE 802.3 PHY

BHND_DEVCLASS_WLAN IEEE 802.11 MAC/PHY/Radio

BHND_DEVCLASS_WLAN_MAC IEEE 802.11 MAC

BHND_DEVCLASS_WLAN_PHY IEEE 802.11 PHY

BHND_DEVCLASS_CPU CPU Core

BHND_DEVCLASS_SOC_ROUTER Interconnect Router

BHND_DEVCLASS_SOC_BRIDGE Interconnect Host Bridge

BHND_DEVCLASS_EROM Device Enumeration ROM

BHND_DEVCLASS_NVRAM NVRAM/Flash Controller

BHND_DEVCLASS_SOFTMODEM Analog/PSTN SoftModem Codec

BHND_DEVCLASS_USB_HOST USB Host Controller

BHND_DEVCLASS_USB_DEV USB Device Controller

BHND_DEVCLASS_USB_DUAL USB Host/Device Controller

BHND_DEVCLASS_OTHER Other / Unknown

BHND_DEVCLASS_INVALID Invalid Class

The bhnd_get_core_info() function returns the core information for device dev. The returned

bhnd_core_info structure contains the following fields:

vendor Vendor identifier (JEP-106, ARM 4-bit continuation encoded)

device Device identifier

hwrev Hardware revision

core_idx Core index

unit Core unit

Symbolic constants for common vendor and device identifiers are defined in <dev/bhnd/bhnd_ids.h>.

Common vendor identifiers include:

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_MFGID_ARM ARM

BHND_MFGID_BCM Broadcom

BHND_MFGID_MIPS MIPS

The bhnd_get_core_index(), bhnd_get_core_unit(), bhnd_get_device(), bhnd_get_hwrev(), and

bhnd_get_vendor() functions are convenience wrappers for bhnd_get_core_info(), returning, respect the

core_idx, core_unit, device, hwrev, or vendor field from the bhnd_core_info structure.

The bhnd_get_device_name() function returns a human readable name for device dev.

The bhnd_get_vendor_name() function returns a human readable name for the vendor of device dev.

The bhnd_read_board_info() function attempts to read the board information for device dev. The board

information will be returned in the location pointed to by info on success.

The bhnd_board_info structure contains the following fields:

board_vendor Vendor ID of the board manufacturer (PCI-SIG assigned).

board_type Board ID.

board_devid Device ID.

board_rev Board revision.

board_srom_rev Board SROM format revision.

board_flags Board flags (1)

board_flags2 Board flags (2)

board_flags3 Board flags (3)

The board_devid field is the Broadcom PCI device ID that most closely matches the capabilities of the

BHND device (if any).

On PCI devices, the board_vendor, board_type, and board_devid fields default to the PCI Subsystem

Vendor ID, PCI Subsystem ID, and PCI device ID, unless overridden in device NVRAM.

On other devices, including SoCs, the board_vendor, board_type, and board_devid fields will be

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

populated from device NVRAM.

Symbolic constants for common board flags are defined in <dev/bhnd/bhnd_ids.h>.

Device Matching Functions
The bhnd device matching functions are used to match against core, chip, and board-level device

attributes. Match requirements are specified using the struct bhnd_board_match, struct

bhnd_chip_match, struct bhnd_core_match, struct bhnd_device_match, and struct bhnd_hwrev_match

match descriptor structures.

The bhnd_board_matches() function returns true if board matches the board match descriptor desc.

Otherwise, it returns false.

The bhnd_chip_matches() function returns true if chip matches the chip match descriptor desc.

Otherwise, it returns false.

The bhnd_core_matches() function returns true if core matches the core match descriptor desc.

Otherwise, it returns false.

The bhnd_device_matches() function returns true if the device dev matches the device match descriptor

desc. Otherwise, it returns false.

The bhnd_hwrev_matches() function returns true if hwrev matches the hwrev match descriptor desc.

Otherwise, it returns false.

The bhnd_bus_match_child() function returns the first child device of bus that matches the device match

descriptor desc. If no matching child is found, NULL is returned.

The bhnd_core_get_match_desc() function returns an equality match descriptor for the core info in core.

The returned descriptor will match only on core attributes identical to those defined by core.

The bhnd_cores_equal() function is a convenience wrapper for bhnd_core_matches() and

bhnd_core_get_match_desc(). This function returns true if the bhnd_core_info structures lhs and rhs are

equal. Otherwise, it returns false.

The bhnd_match_core() function returns a pointer to the first entry in the array cores of length

num_cores that matches desc. If no matching core is found, NULL is returned.

A bhnd_board_match match descriptor may be initialized using one or more of the following macros:

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_MATCH_BOARD_VENDOR(vendor) Match on boards with a vendor equal to

vendor.

BHND_MATCH_BOARD_TYPE(type) Match on boards with a type equal to

BHND_BOARD_ ## type

BHND_MATCH_SROMREV(sromrev) Match on boards with a sromrev that matches

BHND_HWREV_ ## sromrev.

BHND_MATCH_BOARD_REV(hwrev) Match on boards with hardware revisions that

match BHND_ ## hwrev.

BHND_MATCH_BOARD(vendor, type) A convenience wrapper for

BHND_MATCH_BOARD_VENDOR() and

BHND_MATCH_BOARD_TYPE().

For example:

struct bhnd_board_match board_desc = {

BHND_MATCH_BOARD_VENDOR(BHND_MFGID_BROADCOM),

BHND_MATCH_BOARD_TYPE(BCM94360X52C),

BHND_MATCH_BOARD_REV(HWREV_ANY),

BHND_MATCH_SROMREV(RANGE(0, 10))

};

A bhnd_chip_match match descriptor may be initialized using one or more of the following macros:

BHND_MATCH_CHIP_ID(id) Match on chips with an ID equal to

BHND_CHIPID_ ## id

BHND_MATCH_CHIP_REV(hwrev) Match on chips with hardware revisions that

match BHND_ ## hwrev.

BHND_MATCH_CHIP_PKG(pkg) Match on chips with a package ID equal to

BHND_PKGID_ ## pkg

BHND_MATCH_CHIP_TYPE(type) Match on chips with a chip type equal to

BHND_CHIPTYPE_ ## type

BHND_MATCH_CHIP_IP(id, pkg) A convenience wrapper for

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_MATCH_CHIP_ID() and

BHND_MATCH_CHIP_PKG().

BHND_MATCH_CHIP_IPR(id, pkg, hwrev) A convenience wrapper for

BHND_MATCH_CHIP_ID(),

BHND_MATCH_CHIP_PKG(), and

BHND_MATCH_CHIP_REV().

BHND_MATCH_CHIP_IR(id, hwrev) A convenience wrapper for

BHND_MATCH_CHIP_ID() and

BHND_MATCH_CHIP_REV().

For example:

struct bhnd_chip_match chip_desc = {

BHND_MATCH_CHIP_IP(BCM4329, BCM4329_289PIN),

BHND_MATCH_CHIP_TYPE(SIBA)

};

A bhnd_core_match match descriptor may be initialized using one or more of the following macros:

BHND_MATCH_CORE_VENDOR(vendor) Match on cores with a vendor ID equal to vendor

BHND_MATCH_CORE_ID(id) Match on cores with a device ID equal to id

BHND_MATCH_CORE_REV(hwrev) Match on cores with hardware revisions that

match BHND_ ## hwrev.

BHND_MATCH_CORE_CLASS(class) Match on cores with a core device class equal to

class

BHND_MATCH_CORE_IDX(idx) Match on cores with a core index equal to idx

BHND_MATCH_CORE_UNIT(unit) Match on cores with a core unit equal to unit

BHND_MATCH_CORE(vendor, id) A convenience wrapper for

BHND_MATCH_CORE_VENDOR() and

BHND_MATCH_CORE_ID().

For example:

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

struct bhnd_core_match core_desc = {

BHND_MATCH_CORE(BHND_MFGID_BROADCOM, BHND_COREID_CC),

BHND_MATCH_CORE_REV(HWREV_RANGE(0, 10))

};

The bhnd_device_match match descriptor supports matching on all board, chip, and core attributes, and

may be initialized using any of the bhnd_board_match, bhnd_chip_match, or bhnd_core_match macros.

For example:

struct bhnd_device_match device_desc = {

BHND_MATCH_CHIP_IP(BCM4329, BCM4329_289PIN),

BHND_MATCH_BOARD_VENDOR(BHND_MFGID_BROADCOM),

BHND_MATCH_BOARD_TYPE(BCM94329AGB),

BHND_MATCH_CORE(BHND_MFGID_BROADCOM, BHND_COREID_CC),

};

A bhnd_hwrev_match match descriptor may be initialized using one of the following macros:

BHND_HWREV_ANY Matches any hardware revision.

BHND_HWREV_EQ(hwrev) Matches any hardware revision equal to hwrev

BHND_HWREV_GTE(hwrev) Matches any hardware revision greater than or equal to

hwrev

BHND_HWREV_LTE(hwrev) Matches any hardware revision less than or equal to

hwrev

BHND_HWREV_RANGE(start, end) Matches any hardware revision within an inclusive range.

If BHND_HWREV_INVALID is specified as the end

value, will match on any revision equal to or greater than

start

Device Table Functions
The bhnd device table functions are used to query device and quirk tables.

The bhnd_device_lookup() function returns a pointer to the first entry in device table table that matches

the device dev. The table entry size is specified by entry_size.

The bhnd_device_quirks() function scan the device table table for all quirk entries that match the device

dev, returning the bitwise OR of all matching quirk flags. The table entry size is specified by entry_size.

The bhnd_device structure contains the following fields:

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

core A bhnd_device_match descriptor.

desc A verbose device description suitable for use with device_set_desc(9), or NULL.

quirks_table The quirks table for this device, or NULL.

device_flags

The device flags required when matching this entry.

The following device flags are supported:

BHND_DF_ANY Match on any device.

BHND_DF_HOSTB Match only if the device is the bhndb(4) host bridge. Implies

BHND_DF_ADAPTER.

BHND_DF_SOC Match only if the device is attached to a native SoC backplane.

BHND_DF_ADAPTER Match only if the device is attached to a bhndb(4) bridged backplane.

A bhnd_device table entry may be initialized using one of the following macros:

BHND_DEVICE(vendor, device, desc, quirks, flags)

Match on devices with a vendor ID equal to BHND_MFGID_ ## vendor and a core device ID

equal to BHND_COREID_ ## device.

The device’s verbose description is specified by the desc argument, a pointer to the device-

specific quirks table is specified by the quirks argument, and any required device flags may be

provided in flags. The optional flags argument defaults to BHND_DF_ANY if omitted.

BHND_DEVICE_END

Terminate the bhnd_device table.

For example:

struct bhnd_device bhnd_usb11_devices[] = {

BHND_DEVICE(BCM, USB, "Broadcom USB1.1 Controller",

bhnd_usb11_quirks),

BHND_DEVICE_END

};

The bhnd_device_quirk structure contains the following fields:

desc A bhnd_device_match descriptor.

quirks Applicable quirk flags.

A bhnd_device_quirk table entry may be initialized using one of the following convenience macros:

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_BOARD_QUIRK(board, flags) Set quirk flags flags on devices with a board type

equal to BHND_BOARD_ ## board.

BHND_CHIP_QUIRK(chip, hwrev, flags) Set quirk flags flags on devices with a chip ID equal

to BHND_CHIPID_BCM ## chip and chip hardware

revision that matches BHND_ ## hwrev.

BHND_PKG_QUIRK(chip, pkg, flags") Set quirk flags flags on devices with a chip ID equal

to BHND_CHIPID_BCM ## chip and chip package

equal to BHND_ ## chip ## pkg.

BHND_CORE_QUIRK(hwrev, flags") Set quirk flags flags on devices with a core hardware

revision that matches BHND_ ## hwrev.

For example:

struct bhnd_device_quirk bhnd_usb11_quirks[] = {

BHND_DEVICE(BCM, USB, "Broadcom USB1.1 Controller",

bhnd_usb11_quirks),

BHND_DEVICE_END

};

DMA Address Translation Functions
The bhnd_get_dma_translation() function is used to request a DMA address translation descriptor

suitable for use with a maximum DMA address width of width, with support for the requested

translation flags.

If a suitable DMA address translation descriptor is found, it will be stored in translation, and a bus DMA

tag specifying the DMA translation’s address restrictions will be stored in dmat. The translation and

dmat arguments may be NULL if the translation descriptor or DMA tag are not desired.

The following DMA translation flags are supported:

BHND_DMA_TRANSLATION_PHYSMAP

The translation remaps the device’s physical address space.

This is used in conjunction with BHND_DMA_TRANSLATION_BYTESWAPPED to define a

DMA translation that provides byteswapped access to physical memory on big-endian MIPS

SoCs.

BHND_DMA_TRANSLATION_BYTESWAPPED

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

The translation provides a byte-swapped mapping; write requests will be byte-swapped before

being written to memory, and read requests will be byte-swapped before being returned.

This is primarily used to perform efficient byte swapping of DMA data on embedded MIPS SoCs

executing in big-endian mode.

The following symbolic constants are defined for common DMA address widths:

BHND_DMA_ADDR_30BIT 30-bit DMA

BHND_DMA_ADDR_32BIT 32-bit DMA

BHND_DMA_ADDR_64BIT 64-bit DMA

The bhnd_dma_translation structure contains the following fields:

base_addr Host-to-device physical address translation. This may be added to a host physical

address to produce a device DMA address.

addr_mask Device-addressable address mask. This defines the device DMA address range, and

excludes any bits reserved for mapping the address within the translation window at

base_addr.

addrext_mask Device-addressable extended address mask. If a the per-core BHND DMA engine

supports the ’addrext’ control field, it can be used to provide address bits excluded by

addr_mask.

Support for DMA extended address changes -- including coordination with the core

providing device-to-host DMA address translation -- is handled transparently by the

DMA engine.

For example, on PCI Wi-Fi devices, the Wi-Fi core’s DMA engine will (in effect) update

the PCI host bridge core’s DMA sbtopcitranslation base address to map the target address

prior to performing a DMA transaction.

flags Translation flags.

Interrupt Functions
The bhnd_get_intr_count() function is used to determine the number of backplane interrupt lines

assigned to the device dev. Interrupt line identifiers are allocated in monotonically increasing order,

starting with 0.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

The bhnd_get_intr_ivec() function is used to determine the backplane interrupt vector assigned to

interrupt line intr on the device dev, writing the result to ivec. Interrupt vector assignments are

backplane-specific: On BCMA devices, this function returns the OOB bus line assigned to the interrupt.

On SIBA devices, it returns the target OCP slave flag number assigned to the interrupt.

The bhnd_map_intr() function is used to map interrupt line intr assigned to device dev to an IRQ

number, writing the result to irq. Until unmapped, this IRQ may be used when allocating a resource of

type SYS_RES_IRQ.

Ownership of the interrupt mapping is assumed by the caller, and must be explicitly released using

bhnd_unmap_intr.

The bhnd_unmap_intr() function is used to unmap bus IRQ irq previously mapped using

bhnd_map_intr() by the device dev.

NVRAM Functions
The bhnd_nvram_getvar() function is used to read the value of NVRAM variable name from the

NVRAM provider(s) registered with the parent bhnd(4) bus of device dev, coerced to the desired data

representation type, written to the buffer specified by buf.

Before the call, the maximum capacity of buf is specified by len. After a successful call -- or if

ENOMEM is returned -- the size of the available data will be written to len. The size of the desired data

representation can be determined by calling bhnd_nvram_getvar() with a NULL argument for buf.

The following NVRAM data types are supported:

BHND_NVRAM_TYPE_UINT8 unsigned 8-bit integer

BHND_NVRAM_TYPE_UINT16 unsigned 16-bit integer

BHND_NVRAM_TYPE_UINT32 unsigned 32-bit integer

BHND_NVRAM_TYPE_UINT64 signed 64-bit integer

BHND_NVRAM_TYPE_INT8 signed 8-bit integer

BHND_NVRAM_TYPE_INT16 signed 16-bit integer

BHND_NVRAM_TYPE_INT32 signed 32-bit integer

BHND_NVRAM_TYPE_INT64 signed 64-bit integer

BHND_NVRAM_TYPE_CHAR UTF-8 character

BHND_NVRAM_TYPE_STRING UTF-8 NUL-terminated string

BHND_NVRAM_TYPE_BOOL uint8 boolean value

BHND_NVRAM_TYPE_NULL NULL (empty) value

BHND_NVRAM_TYPE_DATA opaque octet string

BHND_NVRAM_TYPE_UINT8_ARRAY array of uint8 integers

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

BHND_NVRAM_TYPE_UINT16_ARRAY array of uint16 integers

BHND_NVRAM_TYPE_UINT32_ARRAY array of uint32 integers

BHND_NVRAM_TYPE_UINT64_ARRAY array of uint64 integers

BHND_NVRAM_TYPE_INT8_ARRAY array of int8 integers

BHND_NVRAM_TYPE_INT16_ARRAY array of int16 integers

BHND_NVRAM_TYPE_INT32_ARRAY array of int32 integers

BHND_NVRAM_TYPE_INT64_ARRAY array of int64 integers

BHND_NVRAM_TYPE_CHAR_ARRAY array of UTF-8 characters

BHND_NVRAM_TYPE_STRING_ARRAY

array of UTF-8 NUL-terminated strings

BHND_NVRAM_TYPE_BOOL_ARRAY array of uint8 boolean values

The bhnd_nvram_getvar_array(), bhnd_nvram_getvar_int(), bhnd_nvram_getvar_int8(),

bhnd_nvram_getvar_int16(), bhnd_nvram_getvar_int32(), bhnd_nvram_getvar_uint(),
bhnd_nvram_getvar_uint8(), bhnd_nvram_getvar_uint16(), bhnd_nvram_getvar_uint32(), and

bhnd_nvram_getvar_str() functions are convenience wrappers for bhnd_nvram_getvar().

The bhnd_nvram_getvar_array() function returns either a value of exactly size in buf, or returns an error

code of ENXIO if the data representation is not exactly size in length.

The bhnd_nvram_getvar_int() and bhnd_nvram_getvar_uint() functions return the value of NVRAM

variable name, coerced to a signed or unsigned integer type of width (1, 2, or 4 bytes).

The bhnd_nvram_getvar_int8(), bhnd_nvram_getvar_int16(), bhnd_nvram_getvar_int32(),

bhnd_nvram_getvar_uint(), bhnd_nvram_getvar_uint8(), bhnd_nvram_getvar_uint16(), and

bhnd_nvram_getvar_uint32() functions return the value of NVRAM variable name, coerced to a signed

or unsigned 8, 16, or 32-bit integer type.

The bhnd_nvram_getvar_str() functions return the value of NVRAM variable name, coerced to a NUL-

terminated string.

The bhnd_nvram_string_array_next() function iterates over all strings in the inp

BHND_NVRAM_TYPE_STRING_ARRAY value. The size of inp, including any terminating NUL

character(s), is specified using the ilen argument. The prev argument should be either a string pointer

previously returned by bhnd_nvram_string_array_next(), or NULL to begin iteration. If prev is not

NULL, the olen argument must be a pointer to the length previously returned by

bhnd_nvram_string_array_next(). On success, the next string element’s length will be written to this

pointer.

Port/Region Functions

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

Per-device interconnect memory mappings are identified by a combination of port type, port number,

and region number. Port and memory region identifiers are allocated in monotonically increasing order

for each port type, starting with 0.

The following port types are supported:

BHND_PORT_DEVICE Device memory. The device’s control/status registers are always

mapped by the first device port and region, and will be assigned a

SYS_RES_MEMORY resource ID of 0.

BHND_PORT_BRIDGE

Bridge memory.

BHND_PORT_AGENT Interconnect agent/wrapper.

The bhnd_decode_port_rid() function is used to decode the resource ID rid assigned to device dev, of

resource type type, writing the port type to port_type, port number to port, and region number to region.

The bhnd_get_port_count() function returns the number of ports of type type assigned to device dev.

The bhnd_get_port_rid() function returns the resource ID for the SYS_RES_MEMORY resource

mapping the port of type and region on device dev, or -1 if the port or region are invalid, or do not have

an assigned resource ID.

The bhnd_get_region_addr() function is used to determine the base address and size of the memory

region on port of type assigned to dev. The region’s base device address will be written to region_addr,

and the region size to region_size.

The bhnd_get_region_count() function returns the number of memory regions mapped to port of type on

device dev.

The bhnd_is_region_valid() function returns true if region is a valid region mapped by port of type on

device dev.

Power Management Functions
Drivers must ask the parent bhnd(4) bus to allocate device PMU state using bhnd_alloc_pmu() before

calling any another bhnd PMU functions.

The bhnd_alloc_pmu() function is used to allocate per-device PMU state and enable PMU request

handling for device dev. The memory region containing the device’s PMU register block must be

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

allocated using bus_alloc_resource(9) or bhnd_alloc_resource() before calling bhnd_alloc_pmu(), and

must not be released until after calling bhnd_release_pmu().

On all supported BHND hardware, the PMU register block is mapped by the device’s control/status

registers in the first device port and region.

The bhnd_release_pmu() function releases the per-device PMU state previously allocated for device dev

using bhnd_alloc_pmu(). Any outstanding clock and external resource requests will be discarded upon

release of the device PMU state.

The bhnd_enable_clocks() function is used to request that clocks be powered up and routed to the

backplane on behalf of device dev. This will power any clock sources required (e.g., XTAL, PLL, etc)

and wait until the requested clocks are stable. If the request succeeds, any previous clock requests

issued by dev will be discarded.

The following clocks are supported, and may be combined using bitwise OR to request multiple clocks:

BHND_CLOCK_DYN Dynamically select an appropriate clock source based on all outstanding

clock requests by any device attached to the parent bhnd(4) bus.

BHND_CLOCK_ILP Idle Low-Power (ILP) Clock. May be used if no register access is

required, or long request latency is acceptable.

BHND_CLOCK_ALP Active Low-Power (ALP) Clock. Supports low-latency register access

and low-rate DMA.

BHND_CLOCK_HT High Throughput (HT) Clock. Supports high bus throughput and lowest-

latency register access.

The bhnd_request_clock() function is used to request that clock (or faster) be powered up and routed to

device dev.

The bhnd_get_clock_freq() function is used to request the current clock frequency of clock, writing the

frequency in Hz to freq.

The bhnd_get_clock_latency() function is used to determine the transition latency required for clock,

writing the latency in microseconds to latency. The BHND_CLOCK_HT latency value is suitable for

use as the D11 Wi-Fi core fastpwrup_dly value.

The bhnd_request_ext_rsrc() function is used to request that the external PMU-managed resource

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

assigned to device dev, identified by device-specific identifier rsrc, be powered up.

The bhnd_release_ext_rsrc() function releases any outstanding requests by device dev for the PMU-

managed resource identified by device-specific identifier rsrc. If an external resource is shared by

multiple devices, it will not be powered down until all device requests are released.

Service Provider Functions
The bhnd_register_provider() function is used to register device dev as a provider for platform service

with the parent bhnd(4) bus.

The following service types are supported:

BHND_SERVICE_CHIPC ChipCommon service. The providing device must implement the

bhnd_chipc interface.

BHND_SERVICE_PWRCTL Legacy PWRCTL service. The providing device must implement

the bhnd_pwrctl interface.

BHND_SERVICE_PMU PMU service. The providing device must implement the

bhnd_pmu interface.

BHND_SERVICE_NVRAM NVRAM service. The providing device must implement the

bhnd_nvram interface.

BHND_SERVICE_GPIO GPIO service. The providing device must implement the standard

gpio(4) interface.

BHND_SERVICE_ANY Matches on any service type. May be used with

bhnd_deregister_provider() to remove all service provider

registrations for a device.

The bhnd_deregister_provider() function attempts to remove provider registration for the device dev and

service. If a service argument of BHND_SERVICE_ANY is specified, this function will attempt to

remove all service provider registrations for dev.

The bhnd_retain_provider() function retains and returns a reference to the provider registered for service

with the parent bhnd(4) bus of devce dev, if available. On success, the caller is responsible for releasing

this provider reference using bhnd_release_provider(). The service provider is guaranteed to remain

available until the provider reference is released.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

The bhnd_release_provider() function releases a reference to a provider for service, previously retained

by device dev using bhnd_retain_provider().

Utility Functions
The bhnd_driver_get_erom_class() function returns the bhnd_erom(9) class for the device enumeration

table format used by bhnd(4) bus driver instance driver. If the driver does not support bhnd_erom(9)

device enumeration, NULL is returned.

The bhnd_find_core_class() function looks up the BHND class, if known, for the BHND vendor ID

vendor and device ID device.

The bhnd_find_core_name() function is used to fetch the human-readable name, if known, for the

BHND core with a vendor ID of vendor and device ID of device.

The bhnd_core_class() and bhnd_core_name() functions are convenience wrappers for

bhnd_find_core_class() and bhnd_find_core_name(), that use the vendor and device fields of the core

info structure ci.

The bhnd_format_chip_id() function writes a NUL-terminated human-readable representation of the

BHND chip_id value to the specified buffer with a capacity of size. No more than size-1 characters will

be written, with the size’th character set to ’\0’. A buffer size of BHND_CHIPID_MAX_NAMELEN is

sufficient for any string representation produced using bhnd_format_chip_id().

The bhnd_set_custom_core_desc() function uses the bhnd(4) device identification of dev, overriding the

core name with the specified dev_name, to populate the device’s verbose description using

device_set_desc(9).

The bhnd_set_default_core_desc() function uses the bhnd(4) device identification of dev to populate the

device’s verbose description using device_set_desc(9).

The bhnd_vendor_name() function returns the human-readable name for the JEP-106, ARM 4-bit

continuation encoded manufacturer ID vendor, if known.

RETURN VALUES
Bus Resource Functions
The bhnd_activate_resource(), bhnd_alloc_resources(), bhnd_deactivate_resource(), and

bhnd_release_resource() functions return 0 on success, otherwise an appropriate error code is returned.

The bhnd_alloc_resource() and bhnd_alloc_resource_any() functions return a pointer to struct resource

on success, a null pointer otherwise.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

Device Configuration Functions
The bhnd_read_config() and bhnd_write_config() functions return 0 on success, or one of the following

values on error:

[EINVAL] The device is not a direct child of the bhnd(4) bus

[EINVAL] The requested width is not one of 1, 2, or 4 bytes.

[ENODEV] Accessing agent/config space for the device is unsupported.

[EFAULT] The requested offset or width exceeds the bounds of the mapped agent/config

space.

The bhnd_read_ioctl(), bhnd_write_ioctl(), bhnd_read_iost(), bhnd_reset_hw(), and bhnd_suspend_hw()

functions return 0 on success, otherwise an appropriate error code is returned.

Device Information Functions
The bhnd_read_board_info() function returns 0 on success, otherwise an appropriate error code is

returned.

DMA Address Translation Functions
The bhnd_get_dma_translation() function returns 0 on success, or one of the following values on error:

[ENODEV] DMA is not supported.

[ENOENT] No DMA translation matching the requested address width and translation flags is

available.

If fetching the requested DMA address translation otherwise fails, an appropriate error code will be

returned.

Interrupt Functions
The bhnd_get_intr_ivec() function returns 0 on success, or ENXIO if the requested interrupt line

exceeds the number of interrupt lines assigned to the device.

The bhnd_map_intr() function returns 0 on success, otherwise an appropriate error code is returned.

NVRAM Functions
The bhnd_nvram_getvar(), bhnd_nvram_getvar_array(), bhnd_nvram_getvar_int(),
bhnd_nvram_getvar_int8(), bhnd_nvram_getvar_int16(), bhnd_nvram_getvar_int32(),

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

bhnd_nvram_getvar_uint(), bhnd_nvram_getvar_uint8(), bhnd_nvram_getvar_uint16(), and

bhnd_nvram_getvar_uint32() functions return 0 on success, or one of the following values on error:

[ENODEV] If an NVRAM provider has not been registered with the bus.

[ENOENT] The requested variable was not found.

[ENOMEM] If the buffer of size is too small to hold the requested value.

[EOPNOTSUPP] If the value’s native type is incompatible with and cannot be coerced to the

requested type.

[ERANGE] If value coercion would overflow (or underflow) the requested type

If reading the variable otherwise fails, an appropriate error code will be returned.

Port/Region Functions
The bhnd_decode_port_rid() function returns 0 on success, or an appropriate error code if no matching

port/region is found.

The bhnd_get_port_rid() function returns the resource ID for the requested port and region, or -1 if the

port or region are invalid, or do not have an assigned resource ID.

The bhnd_get_region_addr() function returns 0 on success, or an appropriate error code if no matching

port/region is found.

PMU Functions
The bhnd_alloc_pmu() function returns 0 on success, otherwise an appropriate error code is returned.

The bhnd_release_pmu() function returns 0 on success, otherwise an appropriate error code is returned,

and the core state will be left unmodified.

The bhnd_enable_clocks() and bhnd_request_clock() functions return 0 on success, or one of the

following values on error:

[ENODEV] An unsupported clock was requested.

[ENXIO] No PMU or PWRCTL provider has been registered with the bus.

The bhnd_get_clock_freq() function returns 0 on success, or ENODEV if the frequency for the specified

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

clock is not available.

The bhnd_get_clock_latency() function returns 0 on success, or ENODEV if the transition latency for

the specified clock is not available.

The bhnd_request_ext_rsrc() and bhnd_release_ext_rsrc() functions return 0 on success, otherwise an

appropriate error code is returned.

Service Provider Functions
The bhnd_register_provider() function returns 0 on success, EEXIST if an entry for service already

exists, or an appropriate error code if service registration otherwise fails.

The bhnd_deregister_provider() function returns 0 on success, or EBUSY if active references to the

service provider exist.

The bhnd_retain_provider() function returns a pointer to device_t on success, a null pointer if the

requested provider is not registered.

Utility Functions
The bhnd_format_chip_id() function returns the total number of bytes written on success, or a negative

integer on failure.

SEE ALSO
bhnd(4), bhnd_erom(9)

AUTHORS
The bhnd driver programming interface and this manual page were written by Landon Fuller

<landonf@FreeBSD.org>.

BHND(9) FreeBSD Kernel Developer’s Manual BHND(9)

FreeBSD 14.2-RELEASE March 26, 2018 FreeBSD 14.2-RELEASE

