
NAME
bpf - Berkeley Packet Filter

SYNOPSIS
#include <net/bpf.h>

void

bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen);

void

bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp);

void

bpfdetach(struct ifnet *ifp);

void

bpf_tap(struct ifnet *ifp, u_char *pkt, u_int *pktlen);

void

bpf_mtap(struct ifnet *ifp, struct mbuf *m);

void

bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m);

u_int

bpf_filter(const struct bpf_insn *pc , u_char *pkt, u_int wirelen, u_int buflen);

int

bpf_validate(const struct bpf_insn *fcode, int flen);

DESCRIPTION
The Berkeley Packet Filter provides a raw interface, that is protocol independent, to data link layers. It

allows all packets on the network, even those destined for other hosts, to be passed from a network

interface to user programs. Each program may specify a filter, in the form of a bpf filter machine

program. The bpf(4) manual page describes the interface used by user programs. This manual page

describes the functions used by interfaces to pass packets to bpf and the functions for testing and running

bpf filter machine programs.

The bpfattach() function attaches a network interface to bpf. The ifp argument is a pointer to the

structure that defines the interface to be attached to an interface. The dlt argument is the data link-layer

BPF(9) FreeBSD Kernel Developer’s Manual BPF(9)

FreeBSD 14.2-RELEASE May 11, 2012 FreeBSD 14.2-RELEASE

type: DLT_NULL (no link-layer encapsulation), DLT_EN10MB (Ethernet), DLT_IEEE802_11 (802.11

wireless networks), etc. The rest of the link layer types can be found in <net/bpf.h>. The hdrlen

argument is the fixed size of the link header; variable length headers are not yet supported. The bpf
system will hold a pointer to ifp->if_bpf. This variable will set to a non-NULL value when bpf requires

packets from this interface to be tapped using the functions below.

The bpfattach2() function allows multiple bpf instances to be attached to a single interface, by

registering an explicit if_bpf rather than using ifp->if_bpf. It is then possible to run tcpdump(1) on the

interface for any data link-layer types attached.

The bpfdetach() function detaches a bpf instance from an interface, specified by ifp. The bpfdetach()

function should be called once for each bpf instance attached.

The bpf_tap() function is used by an interface to pass the packet to bpf. The packet data (including link-

header), pointed to by pkt, is of length pktlen, which must be a contiguous buffer. The ifp argument is a

pointer to the structure that defines the interface to be tapped. The packet is parsed by each processes

filter, and if accepted, it is buffered for the process to read.

The bpf_mtap() function is like bpf_tap() except that it is used to tap packets that are in an mbuf chain,

m. The ifp argument is a pointer to the structure that defines the interface to be tapped. Like bpf_tap(),

bpf_mtap() requires a link-header for whatever data link layer type is specified. Note that bpf only reads

from the mbuf chain, it does not free it or keep a pointer to it. This means that an mbuf containing the

link-header can be prepended to the chain if necessary. A cleaner interface to achieve this is provided

by bpf_mtap2().

The bpf_mtap2() function allows the user to pass a link-header data, of length dlen, independent of the

mbuf m, containing the packet. This simplifies the passing of some link-headers.

The bpf_filter() function executes the filter program starting at pc on the packet pkt. The wirelen

argument is the length of the original packet and buflen is the amount of data present. The buflen value

of 0 is special; it indicates that the pkt is actually a pointer to an mbuf chain (struct mbuf *).

The bpf_validate() function checks that the filter code fcode, of length flen, is valid.

RETURN VALUES
The bpf_filter() function returns -1 (cast to an unsigned integer) if there is no filter. Otherwise, it returns

the result of the filter program.

The bpf_validate() function returns 0 when the program is not a valid filter program.

BPF(9) FreeBSD Kernel Developer’s Manual BPF(9)

FreeBSD 14.2-RELEASE May 11, 2012 FreeBSD 14.2-RELEASE

EVENT HANDLERS
bpf invokes bpf_track EVENTHANDLER(9) event each time listener attaches to or detaches from an

interface. Pointer to (struct ifnet *) is passed as the first argument, interface dlt follows. Last argument

indicates listener is attached (1) or detached (0). Note that handler is invoked with bpf global lock held,

which implies restriction on sleeping and calling bpf subsystem inside EVENTHANDLER(9)

dispatcher. Note that handler is not called for write-only listeners.

SEE ALSO
tcpdump(1), bpf(4), EVENTHANDLER(9)

HISTORY
The Enet packet filter was created in 1980 by Mike Accetta and Rick Rashid at Carnegie-Mellon

University. Jeffrey Mogul, at Stanford, ported the code to BSD and continued its development from

1983 on. Since then, it has evolved into the Ultrix Packet Filter at DEC, a STREAMS NIT module

under SunOS 4.1, and BPF.

AUTHORS
Steven McCanne, of Lawrence Berkeley Laboratory, implemented BPF in Summer 1990. Much of the

design is due to Van Jacobson. This manpage was written by Orla McGann.

BPF(9) FreeBSD Kernel Developer’s Manual BPF(9)

FreeBSD 14.2-RELEASE May 11, 2012 FreeBSD 14.2-RELEASE

