
NAME
bus_dma, bus_dma_tag_create, bus_dma_tag_destroy, bus_dma_template_init, bus_dma_template_tag,

bus_dma_template_clone, bus_dma_template_fill, BUS_DMA_TEMPLATE_FILL,

bus_dmamap_create, bus_dmamap_destroy, bus_dmamap_load, bus_dmamap_load_bio,

bus_dmamap_load_ccb, bus_dmamap_load_crp, bus_dmamap_load_crp_buffer,

bus_dmamap_load_mbuf, bus_dmamap_load_mbuf_sg, bus_dmamap_load_uio, bus_dmamap_unload,

bus_dmamap_sync, bus_dmamem_alloc, bus_dmamem_free - Bus and Machine Independent DMA

Mapping Interface

SYNOPSIS
#include <machine/bus.h>

int

bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary,

bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filtfunc, void *filtfuncarg,

bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,

void *lockfuncarg, bus_dma_tag_t *dmat);

int

bus_dma_tag_destroy(bus_dma_tag_t dmat);

void

bus_dma_template_init(bus_dma_template_t *template, bus_dma_tag_t parent);

int

bus_dma_template_tag(bus_dma_template_t *template, bus_dma_tag_t *dmat);

void

bus_dma_template_clone(bus_dma_template_t *template, bus_dma_tag_t dmat);

void

bus_dma_template_fill(bus_dma_template_t *template, bus_dma_param_t params[], u_int count);

BUS_DMA_TEMPLATE_FILL(bus_dma_template_t *template, bus_dma_param_t param ...);

int

bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp);

int

bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map);

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

int

bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen,

bus_dmamap_callback_t *callback, void *callback_arg, int flags);

int

bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map, struct bio *bio,

bus_dmamap_callback_t *callback, void *callback_arg, int flags);

int

bus_dmamap_load_ccb(bus_dma_tag_t dmat, bus_dmamap_t map, union ccb *ccb,

bus_dmamap_callback_t *callback, void *callback_arg, int flags);

int

bus_dmamap_load_crp(bus_dma_tag_t dmat, bus_dmamap_t map, struct crypto *crp,

bus_dmamap_callback_t *callback, void *callback_arg, int flags);

int

bus_dmamap_load_crp_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, struct crypto_buffer *cb,

bus_dmamap_callback_t *callback, void *callback_arg, int flags);

int

bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *mbuf,

bus_dmamap_callback2_t *callback, void *callback_arg, int flags);

int

bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *mbuf,

bus_dma_segment_t *segs, int *nsegs, int flags);

int

bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio,

bus_dmamap_callback2_t *callback, void *callback_arg, int flags);

void

bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map);

void

bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, op);

int

bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags, bus_dmamap_t *mapp);

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

void

bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map);

DESCRIPTION
Direct Memory Access (DMA) is a method of transferring data without involving the CPU, thus

providing higher performance. A DMA transaction can be achieved between device to memory, device

to device, or memory to memory.

The bus_dma API is a bus, device, and machine-independent (MI) interface to DMA mechanisms. It

provides the client with flexibility and simplicity by abstracting machine dependent issues like setting up

DMA mappings, handling cache issues, bus specific features and limitations.

OVERVIEW
A tag structure (bus_dma_tag_t) is used to describe the properties of a group of related DMA

transactions. One way to view this is that a tag describes the limitations of a DMA engine. For

example, if a DMA engine in a device is limited to 32-bit addresses, that limitation is specified by a

parameter when creating the tag for that device. Similarly, a tag can be marked as requiring buffers

whose addresses are aligned to a specific boundary.

Some devices may require multiple tags to describe DMA transactions with differing properties. For

example, a device might require 16-byte alignment of its descriptor ring while permitting arbitrary

alignment of I/O buffers. In this case, the driver must create one tag for the descriptor ring and a

separate tag for I/O buffers. If a device has restrictions that are common to all DMA transactions in

addition to restrictions that differ between unrelated groups of transactions, the driver can first create a

"parent" tag that decribes the common restrictions. The per-group tags can then inherit these restrictions

from this "parent" tag rather than having to list them explicitly when creating the per-group tags.

A mapping structure (bus_dmamap_t) represents a mapping of a memory region for DMA. On systems

with I/O MMUs, the mapping structure tracks any I/O MMU entries used by a request. For DMA

requests that require bounce pages, the mapping tracks the bounce pages used.

To prepare for one or more DMA transactions, a mapping must be bound to a memory region by calling

one of the bus_dmamap_load() functions. These functions configure the mapping which can include

programming entries in an I/O MMU and/or allocating bounce pages. An output of these functions

(either directly or indirectly by invoking a callback routine) is the list of scatter/gather address ranges a

consumer can pass to a DMA engine to access the memory region. When a mapping is no longer

needed, the mapping must be unloaded via bus_dmamap_unload().

Before and after each DMA transaction, bus_dmamap_sync() must be used to ensure that the correct

data is used by the DMA engine and the CPU. If a mapping uses bounce pages, the sync operations

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

copy data between the bounce pages and the memory region bound to the mapping. Sync operations

also handle architecture-specific details such as CPU cache flushing and CPU memory operation

ordering.

STATIC VS DYNAMIC
bus_dma handles two types of DMA transactions: static and dynamic. Static transactions are used with

a long-lived memory region that is reused for many transactions such as a descriptor ring. Dynamic

transactions are used for transfers to or from transient buffers such as I/O buffers holding a network

packet or disk block. Each transaction type uses a different subset of the bus_dma API.

Static Transactions
Static transactions use memory regions allocated by bus_dma. Each static memory region is allocated

by calling bus_dmamem_alloc(). This function requires a valid tag describing the properties of the

DMA transactions to this region such as alignment or address restrictions. Multiple regions can share a

single tag if they share the same restrictions.

bus_dmamem_alloc() allocates a memory region along with a mapping object. The associated tag,

memory region, and mapping object must then be passed to bus_dmamap_load() to bind the mapping to

the allocated region and obtain the scatter/gather list.

It is expected that bus_dmamem_alloc() will attempt to allocate memory requiring less expensive sync

operations (for example, implementations should not allocate regions requiring bounce pages), but sync

operations should still be used. For example, a driver should use bus_dmamap_sync() in an interrupt

handler before reading descriptor ring entries written by the device prior to the interrupt.

When a consumer is finished with a memory region, it should unload the mapping via

bus_dmamap_unload() and then release the memory region and mapping object via

bus_dmamem_free().

Dynamic Transactions
Dynamic transactions map memory regions provided by other parts of the system. A tag must be

created via bus_dma_tag_create() to describe the DMA transactions to and from these memory regions,

and a pool of mapping objects must be allocated via bus_dmamap_create() to track the mappings of any

in-flight transactions.

When a consumer wishes to schedule a transaction for a memory region, the consumer must first obtain

an unused mapping object from its pool of mapping objects. The memory region must be bound to the

mapping object via one of the bus_dmamap_load() functions. Before scheduling the transaction, the

consumer should sync the memory region via bus_dmamap_sync() with one or more of the "PRE" flags.

After the transaction has completed, the consumer should sync the memory region via

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

bus_dmamap_sync() with one or more of the "POST" flags. The mapping can then be unloaded via

bus_dmamap_unload(), and the mapping object can be returned to the pool of unused mapping objects.

When a consumer is no longer scheduling DMA transactions, the mapping objects should be freed via

bus_dmamap_destroy(), and the tag should be freed via bus_dma_tag_destroy().

STRUCTURES AND TYPES
bus_dma_tag_t

A machine-dependent (MD) opaque type that describes the characteristics of a group of DMA

transactions. DMA tags are organized into a hierarchy, with each child tag inheriting the

restrictions of its parent. This allows all devices along the path of DMA transactions to

contribute to the constraints of those transactions.

bus_dma_template_t

A template is a structure for creating a bus_dma_tag_t from a set of defaults. Once initialized

with bus_dma_template_init(), a driver can over-ride individual fields to suit its needs. The

following fields start with the indicated default values:

alignment 1

boundary 0

lowaddr BUS_SPACE_MAXADDR

highaddr BUS_SPACE_MAXADDR

maxsize BUS_SPACE_MAXSIZE

nsegments BUS_SPACE_UNRESTRICTED

maxsegsize BUS_SPACE_MAXSIZE

flags 0

lockfunc NULL

lockfuncarg NULL

Descriptions of each field are documented with bus_dma_tag_create(). Note that the filtfunc and

filtfuncarg attributes of the DMA tag are not supported with templates.

bus_dma_filter_t

Client specified address filter having the format:

int client_filter(void *filtarg, bus_addr_t testaddr)

Address filters can be specified during tag creation to allow for devices whose DMA address

restrictions cannot be specified by a single window. The filtarg argument is specified by the

client during tag creation to be passed to all invocations of the callback. The testaddr argument

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

contains a potential starting address of a DMA mapping. The filter function operates on the set

of addresses from testaddr to ‘trunc_page(testaddr) + PAGE_SIZE - 1’, inclusive. The filter

function should return zero if any mapping in this range can be accommodated by the device and

non-zero otherwise.

Note: The use of filters is deprecated. Proper operation is not guaranteed.

bus_dma_segment_t

A machine-dependent type that describes individual DMA segments. It contains the following

fields:

bus_addr_t ds_addr;

bus_size_t ds_len;

The ds_addr field contains the device visible address of the DMA segment, and ds_len contains

the length of the DMA segment. Although the DMA segments returned by a mapping call will

adhere to all restrictions necessary for a successful DMA operation, some conversion (e.g. a

conversion from host byte order to the device’s byte order) is almost always required when

presenting segment information to the device.

bus_dmamap_t

A machine-dependent opaque type describing an individual mapping. One map is used for each

memory allocation that will be loaded. Maps can be reused once they have been unloaded.

Multiple maps can be associated with one DMA tag. While the value of the map may evaluate to

NULL on some platforms under certain conditions, it should never be assumed that it will be

NULL in all cases.

bus_dmamap_callback_t

Client specified callback for receiving mapping information resulting from the load of a

bus_dmamap_t via bus_dmamap_load(), bus_dmamap_load_bio(), bus_dmamap_load_ccb(),

bus_dmamap_load_crp(), or bus_dmamap_load_crp_buffer(). Callbacks are of the format:

void client_callback(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)

The callback_arg is the callback argument passed to dmamap load functions. The segs and nseg

arguments describe an array of bus_dma_segment_t structures that represent the mapping. This

array is only valid within the scope of the callback function. The success or failure of the

mapping is indicated by the error argument. More information on the use of callbacks can be

found in the description of the individual dmamap load functions.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

bus_dmamap_callback2_t

Client specified callback for receiving mapping information resulting from the load of a

bus_dmamap_t via bus_dmamap_load_uio() or bus_dmamap_load_mbuf().

Callback2s are of the format:

void client_callback2(void *callback_arg, bus_dma_segment_t *segs, int nseg, bus_size_t

mapsize, int error)

Callback2’s behavior is the same as bus_dmamap_callback_t with the addition that the length of

the data mapped is provided via mapsize.

bus_dmasync_op_t

Memory synchronization operation specifier. Bus DMA requires explicit synchronization of

memory with its device visible mapping in order to guarantee memory coherency. The

bus_dmasync_op_t allows the type of DMA operation that will be or has been performed to be

communicated to the system so that the correct coherency measures are taken. The operations

are represented as bitfield flags that can be combined together, though it only makes sense to

combine PRE flags or POST flags, not both. See the bus_dmamap_sync() description below for

more details on how to use these operations.

All operations specified below are performed from the host memory point of view, where a read

implies data coming from the device to the host memory, and a write implies data going from the

host memory to the device. Alternatively, the operations can be thought of in terms of driver

operations, where reading a network packet or storage sector corresponds to a read operation in

bus_dma.

BUS_DMASYNC_PREREAD Perform any synchronization required prior to an update of

host memory by the device.

BUS_DMASYNC_PREWRITE Perform any synchronization required after an update of host

memory by the CPU and prior to device access to host

memory.

BUS_DMASYNC_POSTREAD Perform any synchronization required after an update of host

memory by the device and prior to CPU access to host

memory.

BUS_DMASYNC_POSTWRITE Perform any synchronization required after device access to

host memory.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

bus_dma_lock_t

Client specified lock/mutex manipulation method. This will be called from within busdma

whenever a client lock needs to be manipulated. In its current form, the function will be called

immediately before the callback for a DMA load operation that has been deferred with

BUS_DMA_LOCK and immediately after with BUS_DMA_UNLOCK. If the load operation

does not need to be deferred, then it will not be called since the function loading the map should

be holding the appropriate locks. This method is of the format:

void lockfunc(void *lockfunc_arg, bus_dma_lock_op_t op)

The lockfuncarg argument is specified by the client during tag creation to be passed to all

invocations of the callback. The op argument specifies the lock operation to perform.

Two lockfunc implementations are provided for convenience. busdma_lock_mutex() performs

standard mutex operations on the sleep mutex provided via lockfuncarg. dflt_lock() will

generate a system panic if it is called. It is substituted into the tag when lockfunc is passed as

NULL to bus_dma_tag_create() and is useful for tags that should not be used with deferred load

operations.

bus_dma_lock_op_t

Operations to be performed by the client-specified lockfunc().

BUS_DMA_LOCK Acquires and/or locks the client locking primitive.

BUS_DMA_UNLOCK Releases and/or unlocks the client locking primitive.

FUNCTIONS
bus_dma_tag_create(parent, alignment, boundary, lowaddr, highaddr, *filtfunc, *filtfuncarg, maxsize,

nsegments, maxsegsz, flags, lockfunc, lockfuncarg, *dmat)

Allocates a DMA tag, and initializes it according to the arguments provided:

parent A parent tag from which to inherit restrictions. The restrictions passed in other

arguments can only further tighten the restrictions inherited from the parent tag.

All tags created by a device driver must inherit from the tag returned by

bus_get_dma_tag() to honor restrictions between the parent bridge, CPU memory,

and the device.

alignment Alignment constraint, in bytes, of any mappings created using this tag. The

alignment must be a power of 2. Hardware that can DMA starting at any address

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

would specify 1 for byte alignment. Hardware requiring DMA transfers to start on a

multiple of 4K would specify 4096.

boundary Boundary constraint, in bytes, of the target DMA memory region. The boundary

indicates the set of addresses, all multiples of the boundary argument, that cannot be

crossed by a single bus_dma_segment_t. The boundary must be a power of 2 and

must be no smaller than the maximum segment size. ‘0’ indicates that there are no

boundary restrictions.

lowaddr, highaddr

Bounds of the window of bus address space that cannot be directly accessed by the

device. The window contains all addresses greater than lowaddr and less than or

equal to highaddr. For example, a device incapable of DMA above 4GB, would

specify a highaddr of BUS_SPACE_MAXADDR and a lowaddr of

BUS_SPACE_MAXADDR_32BIT. Similarly a device that can only perform DMA

to addresses below 16MB would specify a highaddr of BUS_SPACE_MAXADDR

and a lowaddr of BUS_SPACE_MAXADDR_24BIT. Some implementations

require that some region of device visible address space, overlapping available host

memory, be outside the window. This area of ‘safe memory’ is used to bounce

requests that would otherwise conflict with the exclusion window.

filtfunc Optional filter function (may be NULL) to be called for any attempt to map memory

into the window described by lowaddr and highaddr. A filter function is only

required when the single window described by lowaddr and highaddr cannot

adequately describe the constraints of the device. The filter function will be called

for every machine page that overlaps the exclusion window.

Note: The use of filters is deprecated. Proper operation is not guaranteed.

filtfuncarg Argument passed to all calls to the filter function for this tag. May be NULL.

maxsize Maximum size, in bytes, of the sum of all segment lengths in a given DMA mapping

associated with this tag.

nsegments

Number of discontinuities (scatter/gather segments) allowed in a DMA mapped

region.

maxsegsz Maximum size, in bytes, of a segment in any DMA mapped region associated with

dmat.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

flags Are as follows:

BUS_DMA_ALLOCNOW Pre-allocate enough resources to handle at least one map

load operation on this tag. If sufficient resources are not

available, ENOMEM is returned. This should not be

used for tags that only describe buffers that will be

allocated with bus_dmamem_alloc(). Also, due to

resource sharing with other tags, this flag does not

guarantee that resources will be allocated or reserved

exclusively for this tag. It should be treated only as a

minor optimization.

BUS_DMA_COHERENT Indicate that the DMA engine and CPU are cache-

coherent. Cached memory may be used to back

allocations created by bus_dmamem_alloc(). For

bus_dma_tag_create(), the BUS_DMA_COHERENT

flag is currently implemented on arm64.

lockfunc Optional lock manipulation function (may be NULL) to be called when busdma

needs to manipulate a lock on behalf of the client. If NULL is specified, dflt_lock()

is used.

lockfuncarg

Optional argument to be passed to the function specified by lockfunc.

dmat Pointer to a bus_dma_tag_t where the resulting DMA tag will be stored.

Returns ENOMEM if sufficient memory is not available for tag creation or allocating mapping

resources.

bus_dma_tag_destroy(dmat)

Deallocate the DMA tag dmat that was created by bus_dma_tag_create().

Returns EBUSY if any DMA maps remain associated with dmat or ‘0’ on success.

bus_dma_template_init(*template, parent)

Initializes a bus_dma_template_t structure. If the parent argument is non-NULL, this parent tag

is associated with the template and will be compiled into the dma tag that is later created. The

values of the parent are not copied into the template. During tag creation in

bus_dma_tag_template(), any parameters from the parent tag that are more restrictive than what

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

is in the provided template will overwrite what goes into the new tag.

bus_dma_template_tag(*template, *dmat)

Unpacks a template into a tag, and returns the tag via the dmat. All return values are identical to

bus_dma_tag_create(). The template is not modified by this function, and can be reused and/or

freed upon return.

bus_dma_template_clone(*template, dmat)

Copies the fields from an existing tag to a template. The template does not need to be initialized

first. All of its fields will be overwritten by the values contained in the tag. When paired with

bus_dma_template_tag(), this function is useful for creating copies of tags.

bus_dma_template_fill(*template, params[], count)

Fills in the selected fields of the template with the keyed values from the params array. This is

not meant to be called directly, use BUS_DMA_TEMPLATE_FILL() instead.

BUS_DMA_TEMPLATE_FILL(*template, param ...)

Fills in the selected fields of the template with a variable number of key-value parameters. The

macros listed below take an argument of the specified type and encapsulate it into a key-value

structure that is directly usable as a parameter argument. Muliple parameters may be provided at

once.

BD_PARENT() void *

BD_ALIGNMENT() uintmax_t

BD_BOUNDARY() uintmax_t

BD_LOWADDR() vm_paddr_t

BD_HIGHADDR()vm_paddr_t

BD_MAXSIZE() uintmax_t

BD_NSEGMENTS() uintmax_t

BD_MAXSEGSIZE() uintmax_t

BD_FLAGS() uintmax_t

BD_LOCKFUNC()void *

BD_LOCKFUNCARG() void *

bus_dmamap_create(dmat, flags, *mapp)

Allocates and initializes a DMA map. Arguments are as follows:

dmat DMA tag.

flags Are as follows:

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

BUS_DMA_COHERENT Attempt to map the memory loaded with this map such

that cache sync operations are as cheap as possible. This

flag is typically set on maps when the memory loaded

with these will be accessed by both a CPU and a DMA

engine, frequently such as control data and as opposed to

streamable data such as receive and transmit buffers. Use

of this flag does not remove the requirement of using

bus_dmamap_sync(), but it may reduce the cost of

performing these operations.

mapp Pointer to a bus_dmamap_t where the resulting DMA map will be stored.

Returns ENOMEM if sufficient memory is not available for creating the map or allocating

mapping resources.

bus_dmamap_destroy(dmat, map)

Frees all resources associated with a given DMA map. Arguments are as follows:

dmat DMA tag used to allocate map.

map The DMA map to destroy.

Returns EBUSY if a mapping is still active for map.

bus_dmamap_load(dmat, map, buf, buflen, *callback, callback_arg, flags)

Creates a mapping in device visible address space of buflen bytes of buf, associated with the

DMA map map. This call will always return immediately and will not block for any reason.

Arguments are as follows:

dmat DMA tag used to allocate map.

map A DMA map without a currently active mapping.

buf A kernel virtual address pointer to a contiguous (in KVA) buffer, to be mapped into

device visible address space.

buflen The size of the buffer.

callback callback_arg

The callback function, and its argument. This function is called once sufficient mapping

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

resources are available for the DMA operation. If resources are temporarily unavailable,

this function will be deferred until later, but the load operation will still return

immediately to the caller. Thus, callers should not assume that the callback will be called

before the load returns, and code should be structured appropriately to handle this. See

below for specific flags and error codes that control this behavior.

flags Are as follows:

BUS_DMA_NOWAIT The load should not be deferred in case of insufficient mapping

resources, and instead should return immediately with an

appropriate error.

BUS_DMA_NOCACHE

The generated transactions to and from the virtual page are non-

cacheable.

Return values to the caller are as follows:

0 The callback has been called and completed. The status of the mapping has

been delivered to the callback.

EINPROGRESS The mapping has been deferred for lack of resources. The callback will be

called as soon as resources are available. Callbacks are serviced in FIFO

order.

Note that subsequent load operations for the same tag that do not require extra

resources will still succeed. This may result in out-of-order processing of

requests. If the caller requires the order of requests to be preserved, then the

caller is required to stall subsequent requests until a pending request’s callback

is invoked.

ENOMEM The load request has failed due to insufficient resources, and the caller

specifically used the BUS_DMA_NOWAIT flag.

EINVAL The load request was invalid. The callback has been called and has been

provided the same error. This error value may indicate that dmat, map, buf, or

callback were invalid, or buflen was larger than the maxsize argument used to

create the dma tag dmat.

When the callback is called, it is presented with an error value indicating the disposition of the

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

mapping. Error may be one of the following:

0 The mapping was successful and the dm_segs callback argument contains an

array of bus_dma_segment_t elements describing the mapping. This array is

only valid during the scope of the callback function.

EFBIG A mapping could not be achieved within the segment constraints provided in

the tag even though the requested allocation size was less than maxsize.

bus_dmamap_load_bio(dmat, map, bio, callback, callback_arg, flags)

This is a variation of bus_dmamap_load() which maps buffers pointed to by bio for DMA

transfers. bio may point to either a mapped or unmapped buffer.

bus_dmamap_load_ccb(dmat, map, ccb, callback, callback_arg, flags)

This is a variation of bus_dmamap_load() which maps data pointed to by ccb for DMA transfers.

The data for ccb may be any of the following types:

CAM_DATA_VADDR The data is a single KVA buffer.

CAM_DATA_PADDR The data is a single bus address range.

CAM_DATA_SG The data is a scatter/gather list of KVA buffers.

CAM_DATA_SG_PADDR The data is a scatter/gather list of bus address ranges.

CAM_DATA_BIO The data is contained in a struct bio attached to the CCB.

bus_dmamap_load_ccb() supports the following CCB XPT function codes:

XPT_ATA_IO

XPT_CONT_TARGET_IO

XPT_SCSI_IO

bus_dmamap_load_crp(dmat, map, crp, callback, callback_arg, flags)

This is a variation of bus_dmamap_load() which maps the input buffer pointed to by crp for

DMA transfers. The BUS_DMA_NOWAIT flag is implied, thus no callback deferral will

happen.

bus_dmamap_load_crp_buffer(dmat, map, cb, callback, callback_arg, flags)

This is a variation of bus_dmamap_load() which maps the crypto data buffer pointed to by cb for

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

DMA transfers. The BUS_DMA_NOWAIT flag is implied, thus no callback deferral will

happen.

bus_dmamap_load_mbuf(dmat, map, mbuf, callback2, callback_arg, flags)

This is a variation of bus_dmamap_load() which maps mbuf chains for DMA transfers. A

bus_size_t argument is also passed to the callback routine, which contains the mbuf chain’s

packet header length. The BUS_DMA_NOWAIT flag is implied, thus no callback deferral will

happen.

Mbuf chains are assumed to be in kernel virtual address space.

Beside the error values listed for bus_dmamap_load(), EINVAL will be returned if the size of the

mbuf chain exceeds the maximum limit of the DMA tag.

bus_dmamap_load_mbuf_sg(dmat, map, mbuf, segs, nsegs, flags)

This is just like bus_dmamap_load_mbuf() except that it returns immediately without calling a

callback function. It is provided for efficiency. The scatter/gather segment array segs is

provided by the caller and filled in directly by the function. The nsegs argument is returned with

the number of segments filled in. Returns the same errors as bus_dmamap_load_mbuf().

bus_dmamap_load_uio(dmat, map, uio, callback2, callback_arg, flags)

This is a variation of bus_dmamap_load() which maps buffers pointed to by uio for DMA

transfers. A bus_size_t argument is also passed to the callback routine, which contains the size

of uio, i.e. uio->uio_resid. The BUS_DMA_NOWAIT flag is implied, thus no callback deferral

will happen. Returns the same errors as bus_dmamap_load().

If uio->uio_segflg is UIO_USERSPACE, then it is assumed that the buffer, uio is in

uio->uio_td->td_proc’s address space. User space memory must be in-core and wired prior to

attempting a map load operation. Pages may be locked using vslock(9).

bus_dmamap_unload(dmat, map)

Unloads a DMA map. Arguments are as follows:

dmat DMA tag used to allocate map.

map The DMA map that is to be unloaded.

bus_dmamap_unload() will not perform any implicit synchronization of DMA buffers. This

must be done explicitly by a call to bus_dmamap_sync() prior to unloading the map.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

bus_dmamap_sync(dmat, map, op)

Performs synchronization of a device visible mapping with the CPU visible memory referenced

by that mapping. Arguments are as follows:

dmat DMA tag used to allocate map.

map The DMA mapping to be synchronized.

op Type of synchronization operation to perform. See the definition of bus_dmasync_op_t

for a description of the acceptable values for op.

The bus_dmamap_sync() function is the method used to ensure that CPU’s and device’s direct

memory access (DMA) to shared memory is coherent. For example, the CPU might be used to

set up the contents of a buffer that is to be made available to a device. To ensure that the data are

visible via the device’s mapping of that memory, the buffer must be loaded and a DMA sync

operation of BUS_DMASYNC_PREWRITE must be performed after the CPU has updated the

buffer and before the device access is initiated. If the CPU modifies this buffer again later,

another BUS_DMASYNC_PREWRITE sync operation must be performed before an additional

device access. Conversely, suppose a device updates memory that is to be read by a CPU. In

this case, the buffer must be loaded, and a DMA sync operation of

BUS_DMASYNC_PREREAD must be performed before the device access is initiated. The

CPU will only be able to see the results of this memory update once the DMA operation has

completed and a BUS_DMASYNC_POSTREAD sync operation has been performed.

If read and write operations are not preceded and followed by the appropriate synchronization

operations, behavior is undefined.

bus_dmamem_alloc(dmat, **vaddr, flags, *mapp)

Allocates memory that is mapped into KVA at the address returned in vaddr and that is

permanently loaded into the newly created bus_dmamap_t returned via mapp. Arguments are as

follows:

dmat DMA tag describing the constraints of the DMA mapping.

vaddr Pointer to a pointer that will hold the returned KVA mapping of the allocated region.

flags Flags are defined as follows:

BUS_DMA_WAITOK The routine can safely wait (sleep) for resources.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

BUS_DMA_NOWAIT The routine is not allowed to wait for resources. If resources

are not available, ENOMEM is returned.

BUS_DMA_COHERENT

Attempt to map this memory in a coherent fashion. See

bus_dmamap_create() above for a description of this flag.

For bus_dmamem_alloc(), the BUS_DMA_COHERENT

flag is currently implemented on arm and arm64.

BUS_DMA_ZERO Causes the allocated memory to be set to all zeros.

BUS_DMA_NOCACHE

The allocated memory will not be cached in the processor

caches. All memory accesses appear on the bus and are

executed without reordering. For bus_dmamem_alloc(), the

BUS_DMA_NOCACHE flag is currently implemented on

amd64 and i386 where it results in the Strong Uncacheable

PAT to be set for the allocated virtual address range.

mapp Pointer to a bus_dmamap_t where the resulting DMA map will be stored.

The size of memory to be allocated is maxsize as specified in the call to bus_dma_tag_create()

for dmat.

The current implementation of bus_dmamem_alloc() will allocate all requests as a single

segment.

An initial load operation is required to obtain the bus address of the allocated memory, and an

unload operation is required before freeing the memory, as described below in

bus_dmamem_free(). Maps are automatically handled by this function and should not be

explicitly allocated or destroyed.

Although an explicit load is not required for each access to the memory referenced by the

returned map, the synchronization requirements as described in the bus_dmamap_sync() section

still apply and should be used to achieve portability on architectures without coherent buses.

Returns ENOMEM if sufficient memory is not available for completing the operation.

bus_dmamem_free(dmat, *vaddr, map)

Frees memory previously allocated by bus_dmamem_alloc(). Any mappings will be invalidated.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

Arguments are as follows:

dmat DMA tag.

vaddr Kernel virtual address of the memory.

map DMA map to be invalidated.

RETURN VALUES
Behavior is undefined if invalid arguments are passed to any of the above functions. If sufficient

resources cannot be allocated for a given transaction, ENOMEM is returned. All routines that are not of

type void will return 0 on success or an error code on failure as discussed above.

All void routines will succeed if provided with valid arguments.

LOCKING
Two locking protocols are used by bus_dma. The first is a private global lock that is used to

synchronize access to the bounce buffer pool on the architectures that make use of them. This lock is

strictly a leaf lock that is only used internally to bus_dma and is not exposed to clients of the API.

The second protocol involves protecting various resources stored in the tag. Since almost all bus_dma
operations are done through requests from the driver that created the tag, the most efficient way to

protect the tag resources is through the lock that the driver uses. In cases where bus_dma acts on its own

without being called by the driver, the lock primitive specified in the tag is acquired and released

automatically. An example of this is when the bus_dmamap_load() callback function is called from a

deferred context instead of the driver context. This means that certain bus_dma functions must always

be called with the same lock held that is specified in the tag. These functions include:

bus_dmamap_load()

bus_dmamap_load_bio()

bus_dmamap_load_ccb()

bus_dmamap_load_mbuf()
bus_dmamap_load_mbuf_sg()

bus_dmamap_load_uio()

bus_dmamap_unload()

bus_dmamap_sync()

There is one exception to this rule. It is common practice to call some of these functions during driver

start-up without any locks held. So long as there is a guarantee of no possible concurrent use of the tag

by different threads during this operation, it is safe to not hold a lock for these functions.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

Certain bus_dma operations should not be called with the driver lock held, either because they are

already protected by an internal lock, or because they might sleep due to memory or resource allocation.

The following functions must not be called with any non-sleepable locks held:

bus_dma_tag_create()

bus_dmamap_create()

bus_dmamem_alloc()

All other functions do not have a locking protocol and can thus be called with or without any system or

driver locks held.

SEE ALSO
devclass(9), device(9), driver(9), rman(9), vslock(9)

Jason R. Thorpe, "A Machine-Independent DMA Framework for NetBSD", Proceedings of the Summer

1998 USENIX Technical Conference, USENIX Association, June 1998.

HISTORY
The bus_dma interface first appeared in NetBSD 1.3.

The bus_dma API was adopted from NetBSD for use in the CAM SCSI subsystem. The alterations to

the original API were aimed to remove the need for a bus_dma_segment_t array stored in each

bus_dmamap_t while allowing callers to queue up on scarce resources.

AUTHORS
The bus_dma interface was designed and implemented by Jason R. Thorpe of the Numerical Aerospace

Simulation Facility, NASA Ames Research Center. Additional input on the bus_dma design was

provided by Chris Demetriou, Charles Hannum, Ross Harvey, Matthew Jacob, Jonathan Stone, and Matt

Thomas.

The bus_dma interface in FreeBSD benefits from the contributions of Justin T. Gibbs, Peter Wemm,

Doug Rabson, Matthew N. Dodd, Sam Leffler, Maxime Henrion, Jake Burkholder, Takahashi

Yoshihiro, Scott Long and many others.

This manual page was written by Hiten M. Pandya and Justin T. Gibbs.

BUS_DMA(9) FreeBSD Kernel Developer’s Manual BUS_DMA(9)

FreeBSD 14.2-RELEASE May 25, 2020 FreeBSD 14.2-RELEASE

