
NAME
BUS_SETUP_INTR, bus_setup_intr, BUS_TEARDOWN_INTR, bus_teardown_intr - create, attach and

teardown an interrupt handler

SYNOPSIS
#include <sys/param.h>
#include <sys/bus.h>

int

BUS_SETUP_INTR(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter,

driver_intr_t *ithread, void *arg, void **cookiep);

int

bus_setup_intr(device_t dev, struct resource *r, int flags, driver_filter_t filter, driver_intr_t ithread,

void *arg, void **cookiep);

int

BUS_TEARDOWN_INTR(device_t dev, device_t child, struct resource *irq, void *cookiep);

int

bus_teardown_intr(device_t dev, struct resource *r, void *cookiep);

DESCRIPTION
The BUS_SETUP_INTR() method will create and attach an interrupt handler to an interrupt previously

allocated by the resource manager’s BUS_ALLOC_RESOURCE(9) method. The flags are found in

<sys/bus.h>, and give the broad category of interrupt. The flags also tell the interrupt handlers about

certain device driver characteristics. INTR_EXCL marks the handler as being an exclusive handler for

this interrupt. INTR_MPSAFE tells the scheduler that the interrupt handler is well behaved in a

preemptive environment (‘‘SMP safe’’), and does not need to be protected by the ‘‘Giant Lock’’ mutex.

INTR_ENTROPY marks the interrupt as being a good source of entropy - this may be used by the

entropy device /dev/random.

To define a time-critical handler that will not execute any potentially blocking operation, use the filter

argument. See the Filter Routines section below for information on writing a filter. Otherwise, use the

ithread argument. The defined handler will be called with the value arg as its only argument. See the

ithread Routines section below for more information on writing an interrupt handler.

The cookiep argument is a pointer to a void * that BUS_SETUP_INTR() will write a cookie for the

parent bus’ use to if it is successful in establishing an interrupt. Driver writers may assume that this

cookie will be non-zero. The nexus driver will write 0 on failure to cookiep.

BUS_SETUP_INTR(9) FreeBSD Kernel Developer’s Manual BUS_SETUP_INTR(9)

FreeBSD 14.0-RELEASE-p11 November 3, 2010 FreeBSD 14.0-RELEASE-p11

The interrupt handler will be detached by BUS_TEARDOWN_INTR(). The cookie needs to be passed

to BUS_TEARDOWN_INTR() in order to tear down the correct interrupt handler. Once

BUS_TEARDOWN_INTR() returns, it is guaranteed that the interrupt function is not active and will no

longer be called.

Mutexes are not allowed to be held across calls to these functions.

Filter Routines
A filter runs in primary interrupt context. In this context, normal mutexes cannot be used. Only the spin

lock version of these can be used (specified by passing MTX_SPIN to mtx_init() when initializing the

mutex). wakeup(9) and similar routines can be called. Atomic operations from machine/atomic may be

used. Reads and writes to hardware through bus_space(9) may be used. PCI configuration registers

may be read and written. All other kernel interfaces cannot be used.

In this restricted environment, care must be taken to account for all races. A careful analysis of races

should be done as well. It is generally cheaper to take an extra interrupt, for example, than to protect

variables with spinlocks. Read, modify, write cycles of hardware registers need to be carefully analyzed

if other threads are accessing the same registers.

Generally, a filter routine will use one of two strategies. The first strategy is to simply mask the

interrupt in hardware and allow the ithread routine to read the state from the hardware and then reenable

interrupts. The ithread also acknowledges the interrupt before re-enabling the interrupt source in

hardware. Most PCI hardware can mask its interrupt source.

The second common approach is to use a filter with multiple taskqueue(9) tasks. In this case, the filter

acknowledges the interrupts and queues the work to the appropriate taskqueue. Where one has to

multiplex different kinds of interrupt sources, like a network card’s transmit and receive paths, this can

reduce lock contention and increase performance.

You should not malloc(9) from inside a filter. You may not call anything that uses a normal mutex.

Witness may complain about these.

ithread Routines
You can do whatever you want in an ithread routine, except sleep. Care must be taken not to sleep in an

ithread. In addition, one should minimize lock contention in an ithread routine because contested locks

ripple over to all other ithread routines on that interrupt.

Sleeping
Sleeping is voluntarily giving up control of your thread. All the sleep routine found in msleep(9) sleep.

Waiting for a condition variable described in condvar(9) is sleeping. Calling any function that does any

BUS_SETUP_INTR(9) FreeBSD Kernel Developer’s Manual BUS_SETUP_INTR(9)

FreeBSD 14.0-RELEASE-p11 November 3, 2010 FreeBSD 14.0-RELEASE-p11

of these things is sleeping.

RETURN VALUES
Zero is returned on success, otherwise an appropriate error is returned.

SEE ALSO
random(4), device(9), driver(9), locking(9)

AUTHORS
This manual page was written by Jeroen Ruigrok van der Werven <asmodai@FreeBSD.org> based on

the manual pages for BUS_CREATE_INTR() and BUS_CONNECT_INTR() written by Doug Rabson

<dfr@FreeBSD.org>.

BUS_SETUP_INTR(9) FreeBSD Kernel Developer’s Manual BUS_SETUP_INTR(9)

FreeBSD 14.0-RELEASE-p11 November 3, 2010 FreeBSD 14.0-RELEASE-p11

